DOI QR코드

DOI QR Code

Krill-Derived Phosphatidylserine Improves TMT-Induced Memory Impairment in the Rat

  • Shim, Hyun-Soo (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Park, Hyun-Jung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Ahn, Yong-Ho (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Her, Song (Korea Basic Science Institute Chuncheon Branch) ;
  • Han, Jeong-Jun (Glonet BU, Doosan Co.) ;
  • Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Lee, Hye-Jung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Shim, In-Sop (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
  • Received : 2011.09.29
  • Accepted : 2012.01.27
  • Published : 2012.03.31

Abstract

The present study examined the effects of krill-derived phosphatidylserine (Krill-PS) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The rats were administered vehicle (medium-chain triglyceride: MCT) or Krill-PS (50, 100 mg/kg, p.o.) daily for 21 days. The cognitive improving efficacy of Krill-PS in TMT-induced amnesic rats was investigated by assessing the Morris water maze test and by performing choline acetyltransferase (ChAT), acetylcholinesterase (AChE) and cAMP responsive element binding protein (CREB) immunohistochemistry. The rats with TMT injection showed impaired learning and memory of the tasks and treatment with Krill-PS produced a significant improvement of the escape latency to find the platform in the Morris water maze at the $2^{nd}$ and $4^{th}$ day compared to that of the MCT group (p<0.05). In the retention test, the Krill-PS+MCT groups showed increased time spent around the platform compared to that of the MCT group. Consistent with the behavioral data, Krill-PS 50+MCT group significantly alleviated the loss of acetylcholinergic neurons in the hippocampus and medial septum compared to that of the MCT group. Treatment with Krill-PS significantly increased the CREB positive neurons in the hippocampal CA1 area as compared to that of the MCT group. These results suggest that Krill-PS may be useful for improving the cognitive function via regulation of cholinergic marker enzyme activity and neural activity.

Keywords

References

  1. Alessandri, B., FitzGerald, R. E., Schaeppi, U., Krinke, G. J. and Classen, W. (1994) The use of an unbaited tunnel maze in neurotoxicology: I. Trimethyltin-induced brain lesions. Neurotoxicology 15, 349-357.
  2. Andersson, H., Luthman, J., Lindqvist, E. and Olson, L. (1995) Timecourse of trimethyltin effects on the monoaminergic systems of the rat brain. Neurotoxicology 16, 201-210.
  3. Balaban, C. D., O'Callaghan, J. P. and Billingsley, M. L. (1988) Trimethyltin- induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neuronotypic and gliotypic proteins. Neuroscience 26, 337-361. https://doi.org/10.1016/0306-4522(88)90150-9
  4. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi , D., Schutz, G. and Silva, A. J. (1994) Defi cient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59-68. https://doi.org/10.1016/0092-8674(94)90400-6
  5. Cannon, R. L., Hoover, D. B., Baisden, R. H. and Woodruff, M. L. (1994a) Effects of trimethyltin (TMT) on choline acetyltransferase activity in the rat hippocampus. Infl uence of dose and time following exposure. Mol. Chem. Neuropathol. 23, 27-45. https://doi.org/10.1007/BF02858505
  6. Cannon, R. L., Hoover, D. B., Baisden, R. H. and Woodruff, M. L. (1994b) The effect of time following exposure to trimethyltin (TMT) on cholinergic muscarinic receptor binding in rat hippocampus. Mol. Chem. Neuropathol. 23, 47-62. https://doi.org/10.1007/BF02858506
  7. Casamenti, F., Scali, C. and Pepeu, G. (1991) Phosphatidylserine reverses the age-dependent decrease in cortical acetylcholine release: a microdialysis study. Eur. J. Pharmacol. 194, 11-16. https://doi.org/10.1016/0014-2999(91)90117-9
  8. Cenacchi, T., Bertoldin, T., Farina, C., Fiori, M. G. and Crepaldi, G. (1993) Cognitive decline in the elderly: a double-blind, placebocontrolled multicenter study on effi cacy of phosphatidylserine administration. Aging (Milano) 5, 123-133.
  9. Chang, L. W., Tiemeyer, T. M., Wenger, G. R. and McMillan, D. E. (1983) Neuropathology of trimethyltin intoxication. III. Changes in the brain stem neurons. Environ. Res. 30, 399-411. https://doi.org/10.1016/0013-9351(83)90226-8
  10. Christ, D., Chang, L. W. and McMillan, D. E. (1989) Neurotoxicological effects of trimethyltin on the stellate ganglion. Neurotoxicol. Teratol. 11, 453-460. https://doi.org/10.1016/0892-0362(89)90023-8
  11. Crook, T., Petrie, W., Wells, C. and Massari, D. C. (1992) Effects of phosphatidylserine in Alzheimer's disease. Psychopharmacol. Bull. 28, 61-66.
  12. D'Hooge, R. and De Deyn, P. P. (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36, 60-90. https://doi.org/10.1016/S0165-0173(01)00067-4
  13. Dyer, R. S. (1982) Physiological methods for assessment of Trimethyltin exposure. Neurobehav. Toxicol. Teratol. 4, 659-664.
  14. Earley, B., Burke, M. and Leonard. B. E. (1992) Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat. Neurochem. Int. 21, 351-366. https://doi.org/10.1016/0197-0186(92)90186-U
  15. Earley, B., Burke, M., Leonard, B. E., Gouret, C. J. and Junien, J. L. (1990) A comparison of the psychopharmacological profi les of phencyclidine, ketamine and (+) SKF 10,047 in the trimethyltin rat model. Neuropharmacology 29, 695-703. https://doi.org/10.1016/0028-3908(90)90121-7
  16. Fortemps, E., Amand, G., Bomboir, A., Lauwerys, R. and Laterre, E. C. (1978) Trimethyltin poisoning. Report of two cases. Int. Arch. Occup. Environ Health 41, 1-6. https://doi.org/10.1007/BF00377794
  17. Freyz L, D. J. and Vincendon C. (1982) Asymmetry of brain microsomal membrances. In Phospholipids in thenervous system (L. Horrocks, Ed.), Vol. 1, pp. 37-47. Raven Press, NewYork.
  18. Giacobini, E. (1998) Cholinergic foundations of Alzheimer's disease therapy. J. Physiol. Paris. 92, 283-287. https://doi.org/10.1016/S0928-4257(98)80034-X
  19. Guzowski, J. F. and McGaugh, J. L. (1997) Antisense oligodeoxynucleotide- mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA. 94, 2693-2698. https://doi.org/10.1073/pnas.94.6.2693
  20. Hagan, J. J., Jansen, J. H. and Broekkamp, C. L. (1988) Selective behavioural impairment after acute intoxication with trimethyltin (TMT) in rats. Neurotoxicology 9, 53-74.
  21. Hardingham, G. E. and Bading, H. (2003) The Yin and Yang of NMDA receptor signalling. Trends. Neurosci. 26, 81-89. https://doi.org/10.1016/S0166-2236(02)00040-1
  22. Ishida, N., Akaike, M., Tsutsumi, S., Kanai, H., Masui, A., Sadamatsu, M., Kuroda, Y., Watanabe, Y., McEwen, B. S. and Kato, N. (1997) Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment. Neuroscience 81, 1183-1191. https://doi.org/10.1016/S0306-4522(97)00220-0
  23. Izquierdo, I., Izquierdo, L. A., Barros, D. M., Mello e Souza, T., de Souza, M. M., Quevedo, J., Rodrigues, C., Sant'Anna, M. K., Madruga, M. and Medina, J. H. (1998) Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav. Pharmacol. 9, 421-427. https://doi.org/10.1097/00008877-199809000-00005
  24. Jackson, T. and Ramaswami, M. (2003) Prospects of memory-modifying drugs that target the CREB pathway. Curr. Opin. Drug Discov. Devel. 6, 712-719.
  25. Kataoka-Kato, A., Ukai, M., Sakai, M., Kudo, S. and Kameyama, T. (2005) Enhanced learning of normal adult rodents by repeated oral administration of soybean transphosphatidylated phosphatidylserine. J. Pharmacol. Sci. 98, 307-314. https://doi.org/10.1254/jphs.FP0050366
  26. Kato-Kataoka, A., Sakai, M., Ebina, R., Nonaka, C., Asano, T. and Miyamori, T. (2010) Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J. Clin. Biochem. Nutr. 47, 246-255. https://doi.org/10.3164/jcbn.10-62
  27. Kim, J. H., Ha, H. C., Lee, M. S., Kang, J. I., Kim, H. S., Lee, S. Y., Pyun, K. H. and Shim, I. (2007) Effect of Tremella fuciformis on the neurite outgrowth of PC12h cells and the improvement of memory in rats. Biol. Pharm. Bull. 30, 708-714. https://doi.org/10.1248/bpb.30.708
  28. Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schütz, G. and Silva, A. J. (1997) Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1-11.
  29. Kreyberg, S., Torvik, A., Bjorneboe, A., Wiik-Larsen, W. and Jacobsen, D. (1992) Trimethyltin poisoning: report of a case with postmortem examination. Clin. Neuropathol. 11, 256-259.
  30. Lee, B., Sur, B. J., Han, J. J., Shim, I., Her, S., Lee, H. J. and Hahm, D. H. (2010) Krill phosphatidylserine improves learning and memory in Morris water maze in aged rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 1085-1093. https://doi.org/10.1016/j.pnpbp.2010.05.031
  31. Lonze, B. E. and Ginty, D. D. (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605- 623. https://doi.org/10.1016/S0896-6273(02)00828-0
  32. Mantamadiotis, T., Lemberger, T., Bleckmann, S. C., Kern, H., Kretz, O., Martin Villalba, A., Tronche, F., Kellendonk, C., Gau, D., Kapfhammer, J., Otto, C., Schmid, W. and Schutz, G. (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31, 47-54. https://doi.org/10.1038/ng882
  33. Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H. and Tabira, T. (2001) Effect of chronic stress on cholinergic transmission in rat hippocampus. Brain Res. 915, 108-111. https://doi.org/10.1016/S0006-8993(01)02834-7
  34. Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H. and Tabira, T. (2002) Chronic stress impairs rotarod performance in rats: implications for depressive state. Pharmacol. Biochem. Behav. 71, 79-84. https://doi.org/10.1016/S0091-3057(01)00636-0
  35. Murai, S., Saito, H., Masuda, Y., Odashima, J. and Itoh, T. (1995) AF64A disrupts retrieval processes in long-term memory of mice. Neuroreport. 6, 349-352.
  36. O'Connell, A., Earley, B. and Leonard, B. E. (1994a) Changes in muscarinic (M1 and M2 subtypes) and phencyclidine receptor density in the rat brain following trimethyltin intoxication. Neurochem. Int. 25, 243-252. https://doi.org/10.1016/0197-0186(94)90068-X
  37. O'Connell, A., Earley, B. and Leonard, B. E. (1994b) The neuroprotective effect of tacrine on trimethyltin induced memory and muscarinic receptor dysfunction in the rat. Neurochem. Int. 25, 555-566. https://doi.org/10.1016/0197-0186(94)90154-6
  38. Paxinos, G., Watson, C., Pennisi, M. and Topple, A. (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13, 139- 143. https://doi.org/10.1016/0165-0270(85)90026-3
  39. Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. and Tomlinson, B. E. (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J. Neurol. Sci. 34, 247-265. https://doi.org/10.1016/0022-510X(77)90073-9
  40. Piovesan, P., Quatrini, G., Pacifi ci, L., Taglialatela, G. and Angelucci, L. (1995) Acetyl-L-carnitine restores choline acetyltransferase activity in the hippocampus of rats with partial unilateral fi mbria-fornix transection. International Journal of Developmental Neuroscience: the Offi cial Journal of the International Society for Developmental Neuroscience 13, 13-19. https://doi.org/10.1016/0736-5748(94)00070-J
  41. Pope, C. N., Ho, B. T. and Wright, A. A. (1987) Neurochemical and behavioral effects of N-ethyl-acetylcholine aziridinium chloride in mice. Pharmacol. Biochem. Behav. 26, 365-371. https://doi.org/10.1016/0091-3057(87)90131-6
  42. Porte, Y., Buhot, M. C. and Mons, N. E. (2008) Spatial memory in the Morris water maze and activation of cyclic AMP response elementbinding (CREB) protein within the mouse hippocampus. Learn. Mem. 15, 885-894. https://doi.org/10.1101/lm.1094208
  43. Prusiner, S. B. (1991) Molecular biology of prion diseases. Science 252, 1515-1522. https://doi.org/10.1126/science.1675487
  44. Safer, D. J. and Allen, R. P. (1971) The central effects of scopolamine in man. Biol. Psychiatry. 3, 347-355.
  45. Sala, C., Rudolph-Correia, S. and Sheng, M. (2000) Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20, 3529-3536.
  46. Sun, H., Hu, Y., Zhang, J. M., Li, S. Y. and He, W. (2003) Effects of one Chinese herbs on improving cognitive function and memory of Alzheimer's disease mouse models. Zhongguo Zhong Yao Za Zhi 28, 751-754.
  47. Swartzwelder, H. S., Hepler, J., Holahan, W., King, S. E., Leverenz, H. A., Miller, P. A. and Myers, R. D. (1982) Imparied maze performance in the rat caused by trimethyltin treatment: problem-solving defi cits and perseveration. Neurobehav. Toxicol. Teratol. 4, 169- 176.
  48. Taubenfeld, S. M., Wiig, K. A., Bear, M. F. and Alberini, C. M. (1999) A molecular correlate of memory and amnesia in the hippocampus. Nat. Neurosci. 2, 309-310. https://doi.org/10.1038/7217
  49. Vakhapova, V., Cohen, T., Richter, Y., Herzog, Y. and Korczyn, A. D. (2010) Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in non-demented elderly with memory complaints: a double-blind placebo-controlled trial. Dement. Geriatr. Cogn. Disord. 29, 467-474. https://doi.org/10.1159/000310330
  50. Walsh, T. J., Gallagher, M., Bostock, E. and Dyer, R. S. (1982a) Trimethyltin impairs retention of a passive avoidance task. Neurobehav. Toxicol. Teratol. 4, 163-167.
  51. Walsh, T. J., Miller, D. B. and Dyer, R. S. (1982b) Trimethyltin, a selective limbic system neurotoxicant, impairs radial-arm maze performance. Neurobehav. Toxicol. Teratol. 4, 177-183.
  52. Wu, X., Glinn, M. A., Ostrowski, N. L., Su, Y., Ni, B., Cole, H. W., Bryant, H. U. and Paul, S. M. (1999) Raloxifene and estradiol benzoate both fully restore hippocampal choline acetyltransferase activity in ovariectomized rats. Brain Res. 847, 98-104. https://doi.org/10.1016/S0006-8993(99)02062-4

Cited by

  1. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury vol.6, pp.4, 2017, https://doi.org/10.3892/br.2017.864
  2. Boswellic Acid Improves Cognitive Function in a Rat Model Through Its Antioxidant Activity vol.20, pp.1, 2017, https://doi.org/10.3831/KPI.2017.20.001
  3. Leaf Extract of Sedum kamtschaticum Fisch. & Mey. Ameliorates Cognitive Dysfunction in Trimethyltin-treated Rats vol.29, pp.1, 2012, https://doi.org/10.7783/kjmcs.2021.29.1.1