DOI QR코드

DOI QR Code

Peripubertal Administration of Icariin and Icaritin Advances Pubertal Development in Female Rats

  • Kang, Hyun-Ku (School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Sang-Bum (School of Life Sciences and Biotechnology, Korea University) ;
  • Kwon, Hyo-Suk (School of Life Sciences and Biotechnology, Korea University) ;
  • Sung, Chung-Ki (College of Pharmacy, Chonnam National University) ;
  • Park, Young-In (School of Life Sciences and Biotechnology, Korea University) ;
  • Dong, Mi-Sook (School of Life Sciences and Biotechnology, Korea University)
  • Received : 2012.01.20
  • Accepted : 2012.03.06
  • Published : 2012.03.31

Abstract

Epimedii Herba is a traditional medicinal herb used in Korea and China and exerts estrogenic activity. In this study, we investigated the effect of peripubertal administration of Epimedii Herba on pubertal development in female rats using a modified protocol of the rodent 20-day pubertal female assay. Female Sprague-Dawley rats (21 days old after weaning, 10 rats per group) were divided into five groups: saline (Con), ethinyl estradiol (E2), Epimedii Herba ext (Ext), icariin (ICI), and icaritin (ICT), which were administered by oral gavage (E2 by subcutaneous injection) from postnatal day (PND) 21 through PND40. The time to vaginal opening (VO) was shorter for the Epimedii groups, particularly for the ICT group (p<0.05). Treatment with ICI and ICT significantly increased the duration of the estrus cycle (ICI, 2.78 days; ICT, 4.0 days; control, 1.78 days). Ovary weight was reduced by E2 treatment and increased by the Ext, ICI, and ICT treatments while the weight of the uterus and pituitary glands increased significantly only in the E2 and ICT groups. Although Epimedii Herba displayed relatively weak estrogenic activity, its repeated administration could affect pubertal development in female rats.

Keywords

References

  1. Ashby, J., Tinwell, H., Stevens, J., Pastoor, T. and Breckenridge, C. B. (2002) The effects of atrazine on the sexual maturation of female rats. Regul. Toxicol. Pharmacol. 35, 468-473. https://doi.org/10.1006/rtph.2002.1571
  2. Cassidy, A. (2003) Potential risks and benefi ts of phytoestrogen-rich diets. Int. J. Vitam. Nutr. Res. 73, 120-126. https://doi.org/10.1024/0300-9831.73.2.120
  3. Champlin, A. K., Dorr, D. L. and Gates, A. H. (1973) Determining the stage of the estrous cycle in the mouse by the appearance of the vagina. Biol. Reprod. 8, 491-494.
  4. Chen, X. J., Ji, H., Wang, Y. T. and Li, S. P. (2008) Simultaneous determination of seven flavonoids in Epimedium using pressurized liquid extraction and capillary electrochromatography. J. Sep. Sci. 31, 881-887. https://doi.org/10.1002/jssc.200700615
  5. Chiu, J. H., Chen, K. K., Chien, T. M., Chiou, W. F., Chen, C. C., Wang, J. Y., Lui, W. Y. and Wu, C. W. (2006) Epimedium brevicornum Maxim extract relaxes rabbit corpus cavernosum through multitargets on nitric oxide/cyclic guanosine monophosphate signaling pathway. Int. J. Impot. Res. 18, 335-342. https://doi.org/10.1038/sj.ijir.3901437
  6. Coughtrie, M. W., Burchell, B., Leakey, J. E. and Hume, R. (1988) The inadequacy of perinatal glucuronidation: immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human liver microsomes. Mol. Pharmacol. 34, 729-735.
  7. Dong, M. S., Kwon, H., Lee, S. B., Kang, H. K., Kim, D. H., Sung, C. S. and Park, Y. I. (2012) Estrogenic/antiestrogenic activity of the Epimedium koreanum extract and its major components; in vitro and in vivo studies. Submitted to Journal of Food and Toxicology (1989) Neurobiology of reproduction in the female rat. A fi fty-year perspective. Monographs in Endocrinology. 32, 1-133.
  8. Everett, J.W. (1989) Neurobiology of reproduction in the female rat. A fifty-year perspective. Monographs in Endocrinology 32, 1-133. https://doi.org/10.1007/978-3-642-83797-5_1
  9. Geis, R. B., Diel, P., Degen, G. H. and Vollmer, G. (2005) Effects of genistein on the expression of hepatic genes in two rat strains (Sprague-Dawley and Wistar). Toxicol. Lett. 157, 21-29. https://doi.org/10.1016/j.toxlet.2005.01.001
  10. Goldman, J. M., Laws, S. C., Balchak, S. K., Cooper, R. L. and Kavlock, R. J. (2000) Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. A focus on the EDSTAC recommendations. Crit. Rev. Toxicol. 30, 135-196. https://doi.org/10.1080/10408440091159185
  11. Goldman, J. M., Murr, A. S. and Cooper, R. L. (2007) The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res. B. Dev. Reprod. Toxicol. 80, 84-97. https://doi.org/10.1002/bdrb.20106
  12. Islam, N. M., Yoo, H. H., Lee, M. W., Dong, M. S., Park, Y. I., Jeong, H. S. and Kim, D. H. (2008) Simultaneous quantitation of five flavonoid glycosides in Herba Epimedii by high-performance liquid chromatography-tandem mass spectrometry. Phytochem. Anal. 19, 71-77. https://doi.org/10.1002/pca.1018
  13. Jefferson, W. N., Doerge, D., Padilla-Banks, E., Woodling, K. A., Kissling, G. E. and Newbold, R. (2009) Oral exposure to genistin, the glycosylated form of genistein, during neonatal life adversely affects the female reproductive system. Environ. Health Perspect. 117, 1883-1889. https://doi.org/10.1289/ehp.0900923
  14. Kim, H. S., Shin, J. H., Moon, H. J., Kang, I. H., Kim, T. S., Kim, I. Y., Seok, J. H., Pyo, M. Y. and Han, S. Y. (2002) Comparative estrogenic effects of p-nonylphenol by 3-day uterotrophic assay and female pubertal onset assay. Reprod. Toxicol. 16, 259-268. https://doi.org/10.1016/S0890-6238(02)00028-X
  15. Kouki, T., Kishitake, M., Okamoto, M., Oosuka, I., Takebe, M. and Yamanouchi, K. (2003) Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Horm. Behav. 44, 140-145. https://doi.org/10.1016/S0018-506X(03)00122-3
  16. Liu, W. J., Xin, Z. C., Xin, H., Yuan, Y. M., Tian, L. and Guo, Y. L. (2005) Effects of icariin on erectile function and expression of nitric oxide synthase isoforms in castrated rats. Asian J. Androl. 7, 381-388. https://doi.org/10.1111/j.1745-7262.2005.00066.x
  17. Liu, Y., Liu, Y., Dai, Y., Xun, L. and Hu, M. (2003) Enteric disposition and recycling of flavonoids and ginkgo flavonoids. J. Altern. Complement Med. 9, 631-640. https://doi.org/10.1089/107555303322524481
  18. Ma, H., He, X., Yang, Y., Li, M., Hao, D. and Jia, Z. (2011) The genus Epimedium: an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 134, 519-541. https://doi.org/10.1016/j.jep.2011.01.001
  19. Makarova, M. N., Pozharitskaya, O. N., Shikov, A. N., Tesakova, S. V., Makarov, V. G. and Tikhonov, V. P. (2007) Effect of lipid-based suspension of Epimedium koreanum Nakai extract on sexual behavior in rats. J. Ethnopharmacol. 114, 412-416. https://doi.org/10.1016/j.jep.2007.08.021
  20. Patisaul, H. B. and Jefferson, W. (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol. 31, 400-419. https://doi.org/10.1016/j.yfrne.2010.03.003
  21. Shen, P., Guo, B. L., Gong, Y., Hong, D. Y., Hong, Y. and Yong, E. L. (2007) Taxonomic, genetic, chemical and estrogenic characteristics of Epimedium species. Phytochemistry. 68, 1448-1458. https://doi.org/10.1016/j.phytochem.2007.03.001
  22. Strom, B. L., Schinnar, R., Ziegler, E. E., Barnhart, K. T., Sammel, M. D., Macones, G. A., Stallings, V. A., Drulis, J. M., Nelson, S. E. and Hanson, S. A. (2001) Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA. 286, 807-814. https://doi.org/10.1001/jama.286.7.807
  23. Wang, Z. Q. and Lou, Y. J. (2004) Proliferation-stimulating effects of icaritin and desmethylicaritin in MCF-7 cells. Eur. J. Pharmacol. 504, 147-153. https://doi.org/10.1016/j.ejphar.2004.10.002
  24. Whitten, P. L. and Naftolin, F (1992) Effects of a phytoestrogen diet on estrogen-dependent reproductive processes in immature female rats. Steroids. 57, 56-61. https://doi.org/10.1016/0039-128X(92)90029-9
  25. Xu, W., Zhang, Y., Yang, M., Shen, Z., Zhang, X., Zhang, W. and Li, H. (2007) LC-MS/MS method for the simultaneous determination of icariin and its major metabolites in rat plasma. J. Pharm. Biomed. Anal. 45, 667-672. https://doi.org/10.1016/j.jpba.2007.07.007
  26. Yap, S. P., Shen, P., Li, J., Lee, L. S. and Yong, E. L. (2007) Molecular and pharmacodynamic properties of estrogenic extracts from the traditional Chinese medicinal herb, Epimedium. J. Ethnopharmacol. 113, 218-224. https://doi.org/10.1016/j.jep.2007.05.029
  27. Zhang, G., Wang, X. L., Sheng, H., Xie, X. H., He, Y. X., Yao, X. S., Li, Z. R., Lee, K. M., He, W., Leung, K. S. and Qin, L. (2009) Constitutional flavonoids derived from Epimedium dose-dependently reduce incidence of steroid-associated osteonecrosis not via direct action by themselves on potential cellular targets. PLoS One. 4, e6419. https://doi.org/10.1371/journal.pone.0006419

Cited by

  1. The regulatory role of icariin on apoptosis in mouse preimplantation embryos with reduced microRNA-21 vol.82, pp.3, 2014, https://doi.org/10.1016/j.theriogenology.2014.05.006
  2. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii vol.126, 2015, https://doi.org/10.1016/j.lfs.2015.01.006
  3. The Review of the Herbal Medicines with Phytoestrogenic Effect vol.29, pp.2, 2015, https://doi.org/10.7778/jpkm.2015.29.2.059
  4. Estrogenic/antiestrogenic activities of a Epimedium koreanum extract and its major components: in vitro and in vivo studies vol.50, pp.8, 2012, https://doi.org/10.1016/j.fct.2012.05.017
  5. Systematic considerations for a multicomponent pharmacokinetic study of Epimedii wushanensis herba: From method establishment to pharmacokinetic marker selection vol.22, pp.4, 2015, https://doi.org/10.1016/j.phymed.2015.02.004
  6. Icaritin inhibits decidualization of endometrial stromal cells vol.14, pp.6, 2012, https://doi.org/10.3892/etm.2017.5278
  7. Dietary Supplementation With Icariin Affects Estrogen Synthesis, Vitellogenesis, and Oocyte Development in the Chinese Mitten Crab, Eriocheir sinensis vol.7, pp.None, 2012, https://doi.org/10.3389/fmars.2020.00161
  8. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review vol.15, pp.None, 2021, https://doi.org/10.2147/dddt.s310686