DOI QR코드

DOI QR Code

Activation of Estrogen Receptor by Bavachin from Psoralea corylifolia

  • Park, Joon-Woo (College of Life Science, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University) ;
  • Kim, Do-Hee (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University) ;
  • Ahn, Hye-Na (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University) ;
  • Song, Yun-Seon (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University) ;
  • Lee, Young-Joo (College of Life Science, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University) ;
  • Ryu, Jae-Ha (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University)
  • Received : 2011.10.25
  • Accepted : 2012.01.10
  • Published : 2012.03.31

Abstract

In this study, we examined the estrogenic activity of bavachin, a component of Psoralea corylifolia that has been used as a traditional medicine in Asia. Bavachin was purified from ethanolic extract of Psoralea corylifolia and characterized its estrogenic activity by ligand binding, reporter gene activation, and endogenous estrogen receptor (ER) target gene regulation. Bavachin showed ER ligand binding activity in competitive displacement of [$^3H$] $E_2$ from recombinant ER. The estrogenic activity of bavachin was characterized in a transient transfection system using $ER{\alpha}$ or $ER{\beta}$ and estrogen-responsive luciferase plasmids in CV-1 cells with an $EC_{50}$ of 320 nM and 680 nM, respectively. Bavachin increased the mRNA levels of estrogen-responsive genes such as pS2 and PR, and decreased the protein level of $ER{\alpha}$ by proteasomal pathway. However, bavachin failed to activate the androgen receptor in CV-1 cells transiently transfected with the corresponding receptor and hormone responsive reporter plasmid. These data indicate that bavachin acts as a weak phytoestrogen by binding and activating the ER.

Keywords

References

  1. Bae, U. J., Lee, D. Y., Song, M. Y., Lee, S. M., Park, J. W., Ryu, J. H. and Park, B. H. (2011) A prenylated fl avan from Broussonetia kazinoki prevents cytokine-induced $\beta$-cell death through suppression of nuclear factor-${\kappa}B$ activity. Biol. Pharm. Bull. 34, 1026-1031. https://doi.org/10.1248/bpb.34.1026
  2. Borrelli, F. and Ernst, E. (2008) Black cohosh (Cimicifuga racemosa) for menopausal symptoms: a systematic review of its effi cacy. Pharmacol. Res. 58, 8-14. https://doi.org/10.1016/j.phrs.2008.05.008
  3. Borrelli, F. and Ernst, E. (2010) Alternative and complementary therapies for the menopause. Maturitas. 66, 333-343. https://doi.org/10.1016/j.maturitas.2010.05.010
  4. Cederroth, C. R. and Nef, S. (2009) Soy, phytoestrogens and metabolism: A review. Mol. Cell Endocrinol. 304, 30-42. https://doi.org/10.1016/j.mce.2009.02.027
  5. Chang, E. C., Charn, T. H., Park, S. H., Helferich, W. G., Komm, B., Katzenellenbogen, J. A. and Katzenellenbogen, B. S. (2008) Estrogen Receptors alpha and beta as determinants of gene expression: infl uence of ligand, dose, and chromatin binding. Mol. Endocrinol. 22, 1032-1043. https://doi.org/10.1210/me.2007-0356
  6. Chang, E. C., Frasor, J., Komm, B. and Katzenellenbogen, B. S. (2006) Impact of estrogen receptor beta on gene networks regulated by estrogen receptor alpha in breast cancer cells. Endocrinology 147, 4831-4842. https://doi.org/10.1210/en.2006-0563
  7. Cheng, C. C., Chen, Y. H., Chang, W. L., Yang, S. P., Chang, D. M., Lai, J. H. and Ho, L. J. (2010) Phytoestrogen bavachin mediates anti-infl ammation targeting Ikappa B kinase-I kappaB alpha-NFkappaB signaling pathway in chondrocytes in vitro. Eur. J. Pharmacol. 636, 181-188. https://doi.org/10.1016/j.ejphar.2010.03.031
  8. Choi, J. H., Rho, M. C., Lee, S. W., Choi, J. N., Kim, K., Song, G. Y. and Kim, Y. K. (2008) Bavachin and isobavachalcone, acyl-coenzyme A: cholesterol acyltransferase inhibitors from Psoralea corylifolia. Arch. Pharm. Res. 31, 1419-1423. https://doi.org/10.1007/s12272-001-2126-x
  9. Davis, V. L., Jayo, M. J., Ho, A., Kotlarczyk, M. P., Hardy, M. L., Foster, W. G. and Hughes, C. L. (2008) Black cohosh increases metastatic mammary cancer in transgenic mice expressing c-erbB2. Cancer Res. 68, 8377-8383. https://doi.org/10.1158/0008-5472.CAN-08-1812
  10. Gehm, B. D., McAndrews, J. M., Jordan, V. C. and Jameson, J. L. (2000) EGF activates highly selective estrogen-responsive reporter plasmids by an ER-independent pathway. Mol. Cell Endocrinol. 159, 53-62. https://doi.org/10.1016/S0303-7207(99)00195-1
  11. Haraguchi, H., Inoue, J., Tamura, Y. and Mizutani, K. (2002) Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother. Res. 16, 539-544. https://doi.org/10.1002/ptr.972
  12. Henley, D. V. and Korach, K. S. (2010) Physiological effects and mechanisms of action of endocrine disrupting chemicals that alter estrogen signaling. Hormones (Athens). 9, 191-205. https://doi.org/10.14310/horm.2002.1270
  13. Jung, B. I., Kim, M. S., Kim, H. A., Kim, D., Yang, J., Her, S. and Song, Y. S. (2010) Caffeic acid phenethyl ester, a component of beehive propolis, is a novel selective estrogen receptor modulator. Phytother. Res. 24, 295-300.
  14. Kronenberg, F. and Fugh-Berman, A. (2002) Complementary and alternative medicine for menopausal symptoms: a review of randomized, controlled trials. Ann. Intern. Med. 137, 805-813. https://doi.org/10.7326/0003-4819-137-10-200211190-00009
  15. Latha, P. G., Evans, D. A., Panikkar, K. R. and Jayavardhanan, K. K. (2000) Immunomodulatory and antitumour properties of Psoralea corylifolia seeds. Fitoterapia 71, 223-231. https://doi.org/10.1016/S0367-326X(99)00151-3
  16. Lee, Y., Jin, Y., Lim, W., Ji, S., Choi, S., Jang, S. and Lee, S. (2003) A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J. Steroid. Biochem. Mol. Biol. 84, 463-468. https://doi.org/10.1016/S0960-0760(03)00067-0
  17. Lee, Y. J. and Gorski, J. (1996) Estrogen-induced transcription of the progesterone receptor gene does not parallel estrogen receptor occupancy. Proc. Natl. Acad. Sci. USA. 93, 15180-15184. https://doi.org/10.1073/pnas.93.26.15180
  18. Lim, W., Park, Y., Cho, J., Park, C., Park, J., Park, Y. K., Park, H. and Lee, Y. (2011) Estrogen receptor beta inhibits transcriptional activity of hypoxia inducible factor-1 through the downregulation of arylhydrocarbon receptor nuclear translocator. Breast Cancer Res. 13, R32. https://doi.org/10.1186/bcr2854
  19. Mueller, S. O., Simon, S., Chae, K., Metzler, M. and Korach, K. S. (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol. Sci. 80, 14-25. https://doi.org/10.1093/toxsci/kfh147
  20. Newton, K. M., Reed, S. D., Grothaus, L., Ehrlich, K., Guiltinan, J., Ludman, E. and Lacroix, A. Z. (2005) The Herbal Alternatives for Menopause (HALT) Study: background and study design. Maturitas. 52, 134-146. https://doi.org/10.1016/j.maturitas.2005.01.007
  21. Obourn, J. D., Koszewski, N. J. and Notides, A. C. (1993) Hormoneand DNA-binding mechanisms of the recombinant human estrogen receptor. Biochemistry 32, 6229-6236. https://doi.org/10.1021/bi00075a016
  22. O'Malley, B. W., Schrader, W. T., Mani, S., Smith, C., Weigel, N. L., Conneely, O. M. and Clark, J. H. (1995) An alternative ligand-independent pathway for activation of steroid receptors. Recent Prog. Horm. Res. 50, 333-347.
  23. Park, Y., Park, J., Lee, Y., Lim, W., Oh, B. C., Shin, C., Kim, W. and Lee, Y. (2011) Mammalian MST2 kinase and human Salvador activate and reduce estrogen receptor alpha in the absence of ligand. J. Mol. Med. (Berl). 89, 181-191. https://doi.org/10.1007/s00109-010-0698-y
  24. Setchell, K. D. (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isofl avones. Am. J. Clin. Nutr. 68 (6 Suppl), 1333S-1346S.
  25. Strom, A., Hartman, J., Foster, J. S., Kietz, S., Wimalasena, J. and Gustafsson, J. A. (2004) Estrogen receptor beta inhibits 17beta-estradiol- stimulated proliferation of the breast cancer cell line T47D. Proc. Natl. Acad. Sci. USA. 101, 1566-1571. https://doi.org/10.1073/pnas.0308319100
  26. Sturgeon, S. R. and Ronnenberg, A. G. (2010) Pomegranate and breast cancer: possible mechanisms of prevention. Nutr. Rev. 68, 122-128. https://doi.org/10.1111/j.1753-4887.2009.00268.x
  27. Virk-Baker, M. K., Nagy, T. R. and Barnes, S. (2010) Role of phytoestrogens in cancer therapy. Planta. Med. 76, 1132-1142. https://doi.org/10.1055/s-0030-1250074
  28. Wang, D., Li, F. and Jiang, Z. (2001) Osteoblastic proliferation stimulating activity of Psoralea corylifolia extracts and two of its flavonoids. Planta Med. 67, 748-749. https://doi.org/10.1055/s-2001-18343
  29. Xin, D., Wang, H., Yang, J., Su, Y. F., Fan, G. W., Wang, Y. F., Zhu, Y. and Gao, X, M. (2010) Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine 17, 126-131. https://doi.org/10.1016/j.phymed.2009.05.015
  30. Yin, S., Fan, C. Q., Wang, Y., Dong, L. and Yue, J. M. (2004) Antibacterial prenylfl avone derivatives from Psoralea corylifolia, and their structure-activity relationship study. Bioorg. Med. Chem. 12, 4387-4392. https://doi.org/10.1016/j.bmc.2004.06.014

Cited by

  1. Comparative Effects of Er-Xian Decoction,EpimediumHerbs, and Icariin with Estrogen on Bone and Reproductive Tissue in Ovariectomized Rats vol.2012, 2012, https://doi.org/10.1155/2012/241416
  2. Quantitative Analysis of Psoralea corylifolia Linne and its Neuroprotective and Anti-Neuroinflammatory Effects in HT22 Hippocampal Cells and BV-2 Microglia vol.21, pp.8, 2016, https://doi.org/10.3390/molecules21081076
  3. Discovery of a New Class of Cathepsin K Inhibitors in Rhizoma Drynariae as Potential Candidates for the Treatment of Osteoporosis vol.17, pp.12, 2016, https://doi.org/10.3390/ijms17122116
  4. Estrogenic/antiestrogenic activities of a Epimedium koreanum extract and its major components: in vitro and in vivo studies vol.50, pp.8, 2012, https://doi.org/10.1016/j.fct.2012.05.017
  5. The Chemical Constituents and Bioactivities of Psoralea corylifolia Linn.: A Review vol.44, pp.01, 2016, https://doi.org/10.1142/S0192415X16500038
  6. Biological Effects of the Herbal Plant-Derived Phytoestrogen Bavachin in Primary Rat Chondrocytes vol.38, pp.8, 2015, https://doi.org/10.1248/bpb.b15-00198
  7. Estrogenic activity of a Rhus verniciflua extract and its major components vol.11, 2014, https://doi.org/10.1016/j.jff.2014.09.014
  8. The potential health effects of dietary phytoestrogens vol.174, pp.11, 2017, https://doi.org/10.1111/bph.13622
  9. Evaluation of the Inhibitory Effects of Bavachinin and Bavachin on Human Monoamine Oxidases A and B vol.2015, 2015, https://doi.org/10.1155/2015/852194
  10. Modulation of Inducible Nitric Oxide Synthase Expression in LPS-Stimulated BV-2 Microglia by Prenylated Chalcones from Cullen corylifolium (L.) Medik. through Inhibition of I-κBα Degradation vol.23, pp.1, 2018, https://doi.org/10.3390/molecules23010109
  11. The Role of Signal Transducer and Activator of Transcription 3 (STAT3) and Its Targeted Inhibition in Hematological Malignancies vol.10, pp.9, 2018, https://doi.org/10.3390/cancers10090327
  12. General survey of Fructus Psoraleae from the different origins and chemical identification of the roasted from raw Fructus Psoraleae vol.26, pp.2, 2012, https://doi.org/10.1016/j.jfda.2017.10.009
  13. Bavachin counteracts receptor activator of nuclear factor-κB-induced osteoclastogenesis though the suppression of nuclear factor-κB signaling pathway in RAW264.7 cells vol.42, pp.3, 2018, https://doi.org/10.21851/obr.42.03.201809.130
  14. Ionic Liquid-Based Ultrasonic-Assisted Extraction to Analyze Seven Compounds in Psoralea Fructus Coupled with HPLC vol.24, pp.9, 2012, https://doi.org/10.3390/molecules24091699
  15. Establishment of a UPLC-MS/MS Method for Studying the Effect of Salt-Processing on Tissue Distribution of Twelve Major Bioactive Components of Qing'e Pills in Rats vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8832736
  16. The influence of phytoestrogens on different physiological and pathological processes: An overview vol.35, pp.1, 2012, https://doi.org/10.1002/ptr.6816
  17. The Potential Effects of Phytoestrogens: The Role in Neuroprotection vol.26, pp.10, 2021, https://doi.org/10.3390/molecules26102954
  18. Anti-metastatic effect of GV1001 on prostate cancer cells; roles of GnRHR-mediated Gαs-cAMP pathway and AR-YAP1 axis vol.11, pp.1, 2021, https://doi.org/10.1186/s13578-021-00704-3
  19. Exploring the interaction of bavachin and its glycoside derivatives with bovine serum albumin using spectroscopic and molecular docking approaches vol.1245, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2021.131078