DOI QR코드

DOI QR Code

Selection of Probiotic Bacteria from Yulmoo Kimchi Using a Stimulated Human Intestinal Model System

인체장모델시스템에 의한 열무김치로부터 프로바이오틱스 균주 선발

  • Received : 2011.11.30
  • Accepted : 2012.01.20
  • Published : 2012.03.31

Abstract

To select potent probiotics from lactic acid bacteria in Yulmoo Kimchi, an in vitro and stimulated human intestinal model system (SHIMS) test were performed. One Leuconostoc mesenteroides strain from five strains of Yulmoo Kimchi and one Lactobacillus plantarum from 12 strains of KCTC and KCCM were selected according to survival in acidic and bile salts conditions. Between the two species, Leu. mesentroides displayed higher survival activity in a SHIMS test. The strain was identified as Leu. mesentroides by 16S rRNA sequencing and was designated as Leu. mesentroides K01.

열무김치로부터 김치유산균을 분리하고 프로바이오틱스로 이용 가능한 균주를 선발하기 위하여 인체의 장관과 유사한 인체장모델시스템(SHIMS)을 이용한 in silico 실험을 수행하였다. 열무김치에서 분리한 5종과 표준균주 12종에 대해 내산성 및 내담즙산성을 시험하여 생존율이 높은 2종의 균주를 선발하였다. 선발한 균주를 SHIMS에서 시험하여 가장 높은 생존율을 나타낸 균주의 16S rRNA를 분석한 결과 Leu. mesenteroides로 동정되었으며 이 김치유산균을 Leu. mesenteroides K01으로 명명하였다. 이 균주는 SHIMS에서 생존율이 높았기 때문에 프로바이오틱스로 다양하게 이용할 가치가 있다고 판단된다.

Keywords

References

  1. Kim SJ. 2005. Physicochemical characteristics of yogurt prepared with lactic acid bacteria isolated from Kimchi. Kor J Food Culture 20: 337-340.
  2. Kong CS, Kim DK, Rhee SH, Rho CW, Hwang HJ, Choi KL, Park KY. 2005. Fermentation properties and in vitro anticancer effect of young radish kimchi and young radish watery kimchi. J Korean Soc Food Sci Nutr 34: 311-316. https://doi.org/10.3746/jkfn.2005.34.3.311
  3. Lee SH, Yang EH, Kwon HS, Kang JH, Kang BH. 2008. Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Kor J Microbiol Biotechnol 36: 121-127.
  4. Sandine WE, Muralidhara KS, Elliker PR, England DC. 1972. Lactic acid bacteria in food and health: A review with special reference to enteropathogenic Escherichia coli as well as certain enteric diseases and their treatment with antibiotics and lactobacilli. J Milk Food Technol 35: 691- 702. https://doi.org/10.4315/0022-2747-35.12.691
  5. Kim HJ, Chang HC. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Kor J Microbiol Biotechnol 34: 196-203.
  6. Kim HJ, Chang HC. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Kor J Microbiol Biotechnol 34: 196-203.
  7. Baik HW. 2007. Probiotics & prebiotics. Gut Liver 49: 119- 124.
  8. Minekus M, Marteau P, Havenaar R. 1995. A multicompartmental dynamic model simulating the stomach and small intestine. ALTA 23: 197-209.
  9. Karsson M, Minekus M, Havenaar R. 1997. Estimation of the bioavailability of iron and phosphorus in cereals using a dynamic in vitro gastrointestinal model. J Sci Food Agr 74: 99-106. https://doi.org/10.1002/(SICI)1097-0010(199705)74:1<99::AID-JSFA775>3.0.CO;2-G
  10. Gardiner G, Stanton C, Lynch PB, Collins JK. 1999. Evaluation of Cheddar cheese as a food carrier for delivery of a probiotic strain to the gastrointestinal tract. J Dairy Sci 82: 1379-1387. https://doi.org/10.3168/jds.S0022-0302(99)75363-4
  11. Marteau P, Minekus M, Havenaar R. 1997. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Dairy Sci 80: 1031-1037. https://doi.org/10.3168/jds.S0022-0302(97)76027-2
  12. Molly K, Vande Woestyne M, Verstraete W. 1993. Development of a S-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39: 254-258. https://doi.org/10.1007/BF00228615
  13. Korea Food Research Institute. 2005. Development of delivery reactive system of bio-molecule. Seongnam, Korea. 22-23.
  14. Lee NK, Kim TH, Choi SY, Park HD. 2004. Identification and probiotic properties of Lactobacillus lactis NK24 isolation from jetgal, a Korean fermented food. Food Sci Biotechnol 13: 417-420.
  15. Shah NP. 2000. Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83: 894-907. https://doi.org/10.3168/jds.S0022-0302(00)74953-8
  16. Gilliland SE, Staley TE, Bush LJ. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67: 3045-3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  17. Seo JH, Lee H. 2007. Characteristics and immunomodulating activity of lactic acid bacteria for the potential probiotics. Korea J Food Sci Technol 39: 681-687.
  18. Gilliland SE, Speck ML. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl Environ Microbiol 33: 15-18.
  19. Mcdonald LC, Fleming HP, Hassan HM. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl Environ Microbiol 57: 2120-2124.
  20. Cheigh HS. 2004. Kimchi: Fermentation and Food Science. Hyoil Publishing Co., Seoul, Korea. 143-192.
  21. Gorbach SL, Chang TW, Goldin B. 1987. Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 330: 1519-1519.

Cited by

  1. Characterization of Probiotic and Functional Properties of Lactobacillus curvatus ML17, a Mukeunji Starter vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.1009
  2. Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.712
  3. 다시마(Saccharina japonica)김치에서 분리한 유산균의 항산화 및 콜레스테롤 감소 효과 vol.53, pp.3, 2020, https://doi.org/10.5657/kfas.2020.0351