Abstract
In information retrieval, search engine provide the rank of web page and the summary of the web page information to user. Snippet is a summaries information of representing web pages. Visiting the web page by the user is affected by the snippet. User sometime visits the wrong page with respect to user intention when uses snippet. The snippet extraction method is difficult to accurate comprehending user intention. In order to solve above problem, this paper proposes a new snippet extraction method using fuzzy implication operator and relevance feedback. The proposed method uses relevance feedback to expand the use's query. The method uses the fuzzy implication operator between the expanded query and the web pages to extract snippet to be well reflected semantic user's intention. The experimental results demonstrate that the proposed method can achieve better snippet extraction performance than the other methods.
정보 검색 시 검색엔진은 사용자에게 웹페이지 순위와 웹페이지의 요약정보를 제공한다. 이중 웹 페이지를 대표 할 수 있는 요약된 정보를 스니핏(snippet)이라한다. 스니핏은 사용자의 웹페이지 방문에 큰 영향을 준다. 정확한 방문 페이지의 정보를 모르고 단지 스니핏 만을 이용할 때에 가끔 사용자의 의도와는 다른 잘못된 웹 페이지를 방문할 수 있다. 이것은 검색엔진에서 지원하는 스니핏에 사용자의 의도를 정확하게 반영하는 것이 어렵기 때문이다. 본 논문은 이러한 문제를 해결하기 위해 연관 피드백과 퍼지 함의 연산자를 이용한 새로운 스니핏 추출 방법을 제안한다. 제안방법은 연관 피드백을 이용하여 사용자의 질의를 확장하고, 확장된 질의와 웹 페이지 사이에 퍼지 함의 연산자를 이용하여 질의와 확장된 질의의 포함관계가 반영된 스니핏을 추출함으로써 사용자의 의도를 스니핏에 더 잘 반영할 수 있다. 실험결과에서 제안방법이 다른 방법보다 스니핏 추출에 더 좋은 성능을 보인다.