DOI QR코드

DOI QR Code

LOWER BOUND OF LENGTH OF TRIANGLE INSCRIBED IN A CIRCLE ON NON-EUCLIDEAN SPACES

  • Chai, Y.D. (Department of Mathematics, SungKyunKwan University) ;
  • Lee, Young-Soo (Department of Mathematics, SungKyunKwan University)
  • Received : 2012.01.09
  • Accepted : 2012.01.25
  • Published : 2012.03.25

Abstract

Wetzel[5] proved if ${\Gamma}$ is a closed curve of length L in $E^n$, then ${\Gamma}$ lies in some ball of radius [L/4]. In this paper, we generalize Wetzel's result to the non-Euclidean plane with much stronger version. That is to develop a lower bound of length of a triangle inscribed in a circle in non-Euclidean plane in terms of a chord of the circle.

Keywords

References

  1. G. D. Chakerian and M. S. Klamkin, Inequalities for sums of distances, Amer. Math. Monthly, 80 (1973), 1009-1017. https://doi.org/10.2307/2318775
  2. M. Ghandehari, Sums of distances in normed spaces, Acta Math. Hungar., 67(1995), 123-129. https://doi.org/10.1007/BF01874527
  3. L. M. Kells, W. F. Kern, and T. R. Bland,Plane and Spherical Trigonometry, McGraw-Hill Inc., New York, 1951.
  4. D. Laugwitz, Konvexe Mittelpunktsbereiche und normierte Raume, Math. Z., 61(1954) 235-244. https://doi.org/10.1007/BF01181345
  5. J. E Wetzel, Covering balls for curves of constant length, L'Enseignement Math., 17(1971) 275-277.