DOI QR코드

DOI QR Code

Derivation of Storage Coefficient and Concentration Time for Derivation of Lateral Inflow Hydrograph

측방 유입 수문곡선 유도를 위한 저류상수 및 집중시간의 유도

  • Yoo, Chul-Sang (School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University) ;
  • Kim, Ha-Young (Civil Cost Estimation Team, Hyundai Development Company) ;
  • Park, Chang-Yeol (Dept. of Environmental and Safety Research, Seoul Development Institute)
  • 유철상 (고려대학교 공과대학 건축사회환경공학부) ;
  • 김하영 (현대산업개발 토목견적예산팀) ;
  • 박창열 (서울시정개발연구원 환경안전연구실)
  • Received : 2011.03.02
  • Accepted : 2011.12.30
  • Published : 2012.03.31

Abstract

The objective of this study is to analyze lateral inflow hydrologically. The IUH of lateral inflow is sum of the impulse responses of total cells in basin. This IUH bases on the Muskingum channel routing method, which hydrologically re-analysed to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. Rectangular and triangular basins were used as imaginary basins and IUH of each basin were derived. The derived IUH have different characteristics with respect to basin's shape. The storage coefficient of lateral inflow was also derived mathematically using general definitions of concentration time and storage coefficient. As a result, the storage coefficient of lateral inflow could be calculated easily using basin's width, length and hydrological characteristics of channel.

본 연구에서는 측방유입의 수문학적 해석을 시도해 보았다. 측방유입의 순간단위도는 여러 개의 격자가 만들어 내는 순간응답의 합으로 나타내었으며, 이는 Muskingum 하도추적모형을 수문학적으로 재해석하여 지체와 저류를 고려한 순간단위도를 이용한 것이다. 유역형상에 따른 측방유입 순간단위도의 변화를 살펴보기 위해 임의로 사각형과 삼각형 유역의 가상유역을 설정하여 각각에 해당하는 순간단위도를 유도하였다. 유도된 순간단위도는 각각 선형하천모형과 선형저수지모형의 합으로 이루어지며, 유역형상에 따라 서로 다른 특징을 보이게 된다. 집중시간과 저류상수의 일반적인 정의를 이용하여 측방유입의 저류상수를 수식적으로 유도하였으며, 그 결과 측방유입의 저류상수는 유역의 폭과 길이 및 주하도의 수문학적 특성을 알면 쉽게 산정할 수 있음을 확인하였다.

Keywords

References

  1. 김주철, 윤여진, 김재한(2005). "Nash 모형의 지체시간을 이용한 GIUH 유도." 한국수자원학회논문집, 한국수자원학회, 제38권, 제10호, pp. 801-810. https://doi.org/10.3741/JKWRA.2005.38.10.801
  2. 유승혁, 이재근, 안재현(2009). "유역 분할에 따른 유출변화 연구." 2009년 한국수자원학회학술발표대회, 한국수자원학회, pp. 976-980.
  3. 유철상(2009). "Nash 모형을 이용한 유역 저류상수 및 집중시간의 이론적 검토." 한국수자원학회논문집, 한국수자원학회, 제42권, 제3호, pp. 235-246. https://doi.org/10.3741/JKWRA.2009.42.3.235
  4. 유철상, 김하영(2010). "Muskingum 하도추적모형의 수문학적 재해석: 선형저수지모형과 선형하천모형의 선형결합." 한국수자원학회논문집, 한국수자원학회, 제43 권, 제12호, pp. 1051-1061. https://doi.org/10.3741/JKWRA.2010.43.12.1051
  5. 전민우, 조용수(2002). "선형저수지모형을 적용한 수리학적 홍수추적." 한국수자원학회논문집, 한국수자원학 회, 제35권, 제6호, pp. 787-796. https://doi.org/10.3741/JKWRA.2002.35.6.787
  6. 정경택(2004). 부정류 해석 기법에 의한 홍수위 산정에 관한 연구. 석사학위논문, 울산대학교, pp. 4-36.
  7. 정종호, 윤용남(2003). 수자원설계실무, 구미서관.
  8. Bengtsson, L. (1991). "Effective concentration time for design storms in complex urban basins." Atmospheric Research, Vol. 27, pp. 137-150. https://doi.org/10.1016/0169-8095(91)90014-N
  9. Beven, K. (1979). "On the generalized kinematic routing method." Water Resources Research, Vol. 15, No. 5, pp. 1238-1242. https://doi.org/10.1029/WR015i005p01238
  10. Brush, L.M. (1961). "Drainage basins, channels and flow characteristics of selected streams in central Pennsylvania." U.S. Geological Survey Professional Paper. Vol. 282-F, pp. 145-175.
  11. Carlston, C.W. (1969). "Downstream variations in the hydraulic geometry of streams: special emphasis on mean velocity." American Journal of Science, Vol. 267, pp. 499-509. https://doi.org/10.2475/ajs.267.4.499
  12. Choudhury, P., Shrivastava, R.K., and Narulkar, M. (2002). "Flood routing in river networks using equivalent Muskingum inflow." Journal of Hydraulic Engineering, Vol. 7, No. 6, pp. 413-419.
  13. Dooge, J.C.I., Strupczewski, W.G., and Napiorkowski, J. (1982). "Hydrodynamic derivation of storage parameters of the Muskingum model." Journal of Hydrology, Vol. 54, No. 4, pp. 371-387. https://doi.org/10.1016/0022-1694(82)90163-9
  14. Fan, P., and Li, J.C. (2006). "Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow." Advances in Water Resources, Vol. 29, pp. 1000-1019. https://doi.org/10.1016/j.advwatres.2005.08.008
  15. Furey, P.R., and Gupta, V.K. (2003). "Affect of temporal variability and the width function on the peak-flow scaling exponent in the Goodwin creek basin." American Geophysical union, Fall meeting.
  16. Hayami, S. (1951). On the propagation of flood waves, Disaster Prevention Research Institute.
  17. Gonwa, W.S., and Kavvas, M.L. (1986). "A modified diffusion equation for flood propagation in trapezoidal channels." Journal of Hydrology, Vol. 83, pp. 119-136. https://doi.org/10.1016/0022-1694(86)90187-3
  18. Khan, H.M. (1993). "Muskingum flood routing model for multiple tributaries." Water Resource Research, Vol. 29, No. 4, pp. 1057-1062. https://doi.org/10.1029/92WR02850
  19. Kshirsagar, M.M., Rahagopalan, B., and Lall, U. (1995). "Optimal parameter estimation for Muskingum routing with ungauged lateral inflow." Journal of Hydrology, Vol. 169, No. 1-4, pp. 25-35. https://doi.org/10.1016/0022-1694(94)02670-7
  20. Krein, A. (2001). "Use of artificial flood events to demonstrate the invalidity of simple mixing models." Hydrological Sciences, Vol. 46, No. 4, pp. 611-622. https://doi.org/10.1080/02626660109492854
  21. Manfreda, S., Fiorevtino, M., and Iacovellis, V. (2005). "DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation." Advanced in Geosciences, Vol. 2, pp. 31-39. https://doi.org/10.5194/adgeo-2-31-2005
  22. Mimikou, M., and Ramachandra, R. (1976). "Estimation of lateral inflow hydrographs." British Corrosion Journal, Vol. 1, pp. 399-420.
  23. Moussa, R. (1996). "Analytical hayami solution for the diffusive wave flood routing problem with lateral inflow." Hydrological Processes, Vol. 10, pp. 1209-1227. https://doi.org/10.1002/(SICI)1099-1085(199609)10:9<1209::AID-HYP380>3.0.CO;2-2
  24. Moussa, R., and Bocquillon, C. (2009). "On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain." Journal of Hydrology, Vol. 374, pp. 116-135. https://doi.org/10.1016/j.jhydrol.2009.06.006
  25. Molnar, P., and Ramirez, J.A. (1998). "Energy dissipation theories and optimal channel characteristics of river networks." Water Resources Research, Vol. 34, No. 7, pp. 1809-1818. https://doi.org/10.1029/98WR00983
  26. Leopold, L.B. (1953). "Downstream change of velocity in rivers." American Journal of Science, Vol. 251, pp. 606-624. https://doi.org/10.2475/ajs.251.8.606
  27. Leopold, L.B., and Maddock, T.F. (1953). "The hydraulic geometry of stream channels and some physiographic implications." Geological Survey Professional Paper, Vol. 252. pp. 1-64.
  28. O'Donnel, T. (1985). "A direct three-parameter Muskingum procedure incorporation lateral inflow." Journal of Hydrological Sciences, Vol. 30, No. 4, pp. 479-496.
  29. Shome, M.L., and Steffler, P.M. (2006). "Flood plain filling by a monoclinal flood wave." Journal of Hydraulic Engineering, Technical Notes, pp. 529-532.
  30. Tawatchai, T.M., and Shyam, K.M. (1985). "Analytical diffusion model for flood routing." Journal of Hydraulic Engineering, Vol. 111, pp. 435-454. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:3(435)
  31. Tewolde, M.H., and Smithers, J.C. (2006). "Flood routing in ungauged catchments using Muskingum methods." Water SA, Vol. 32, No. 3, pp. 379-388.
  32. Ping, F., and Xiaofang, R. (1999). "Method of flood routing for multibranch rivers." Journal of Hydraulic Engineering, Vol. 125, No. 3, pp. 271-276. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:3(271)
  33. Viessman, W., Lewis, G.L., and Knapp, J.W. (1989). Introduction to Hydrology. Harper and Row, New York, USA
  34. Wong, T.S.W. (2002). "Generalized formula for time of travel in rectangular channel." Journal of Hydrologic Engineering, Vol. 6, pp. 445-448.

Cited by

  1. Storage Coefficient of Merged Subbasins vol.22, pp.8, 2017, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001524