References
- M. Avdispahic and L. Smajlovic, On the prime number theorem for a compact Riem- mann surface, Rocky Mountain J. Math. 39 (2009), no. 6, 1837-1845. https://doi.org/10.1216/RMJ-2009-39-6-1837
- P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathemat- ics, Vol. 106 Birkhauser, Boston-Basel-Berlin, 1992.
- D. L. DeGeorge, Length spectrum for compact locally symmetric spaces of strictly neg- ative curvature, Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), no. 2, 133-152. https://doi.org/10.24033/asens.1323
- D. Fried, The zeta functions of Ruelle and Selberg, Ann. Sci. Ecole Norm. Sup. (4) 19 (1986), no. 4, 491-517. https://doi.org/10.24033/asens.1515
- R. Gangolli, The length spectrum of some compact manifolds of negative curvature, J. Differential Geom. 12 (1977), no. 3, 403-424. https://doi.org/10.4310/jdg/1214434092
- R. Gangolli and G. Warner, Zeta functions of Selberg's type for some noncompact quo- tients of symmetric spaces of rank one, Nagoya Math. J. 78 (1980), 1-44. https://doi.org/10.1017/S002776300001878X
- Y. Gon and J. Park, The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps, Math. Ann. 346 (2010), no. 3, 719-767. https://doi.org/10.1007/s00208-009-0408-7
- D. Hejhal, The Selberg Trace Formula for PSL (2;R). Vol. I, Lecture Notes in Mathe- matics 548. Springer-Verlag, Berlin-Heidelberg, 1973.
- D. Hejhal, The Selberg Trace Formula for PSL (2;R). Vol. II, Lecture Notes in Mathematics 1001. Springer-Verlag, Berlin-Heidelberg, 1983.
- H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgrupen II, Math. Ann. 142 (1961), 385-398. https://doi.org/10.1007/BF01451031
- H. Huber, Nachtrag zu [10], Math. Ann. 143 (1961), 463-464. https://doi.org/10.1007/BF01470758
- J. Park, Ruelle zeta function and prime geodesic theorem for hyperbolic manifolds with cusps, in: G. van Dijk, M. Wakayama (eds.), Casimir Force, Casimir Operators and the Riemann Hypothesis, 9-13 November 2009, Kyushu University, Fukuoka, Japan, Walter de Gruyter, 2010.
- W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), no. 3, 573-591. https://doi.org/10.2307/2006982
- B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc. 233 (1977), 241-247. https://doi.org/10.1090/S0002-9947-1977-0482582-9
Cited by
- Order of Selbergʼs and Ruelleʼs zeta functions for compact even-dimensional locally symmetric spaces vol.413, pp.1, 2014, https://doi.org/10.1016/j.jmaa.2013.10.052