DOI QR코드

DOI QR Code

A NOTE ON PSEUDO-RIEMANNIAN ASSOCIATIVE FERMIONIC NOVIKOV ALGEBRAS

  • Chen, Zhiqi (School of Mathematical Sciences and LPMC Nankai University) ;
  • Zhu, Fuhai (School of Mathematical Sciences and LPMC Nankai University)
  • Received : 2010.11.02
  • Published : 2012.03.31

Abstract

In this paper, we focus on pseudo-Riemannian associative fermionic Novikov algebras. We prove that the underlying Lie algebras of pseudo-Riemannian associative fermionic Novikov algebras are 2-step nilpotent and that pseudo-Riemannian associative fermionic Novikov algebras are 3-step nilpotent. Moreover, we construct a pseudo-Riemannian associative fermionic Novikov algebra in dimension 14, which is not a Novikov algebra. It implies that the inverse proposition of Corollary 2 in the paper "Pseudo-Riemannian Novikov algebras" [J. Phys. A: Math. Theor. 41 (2008), 315207] does not hold.

Keywords

References

  1. M. Boucetta, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras, Differential Geom. Appl. 20 (2004), no. 3, 279-291. https://doi.org/10.1016/j.difgeo.2003.10.013
  2. M. Boucetta, Compatibility between pseudo-Riemannian structures and Poisson structures, C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), no. 8, 763-768. https://doi.org/10.1016/S0764-4442(01)02132-2
  3. M. Boucetta, On the Riemann-Lie algebras and Riemann-Poisson Lie groups, J. Lie Theory 15 (2005), no. 1, 183-195.
  4. D. Burde, Simple left-symmetric algebras with solvable Lie algebra, Manuscripta Math. 95 (1998), no. 3, 397-411. https://doi.org/10.1007/s002290050037
  5. Z. Chen and F. Zhu, Pseudo-Riemannian Novikov algebras, J. Phys. A 41 (2008), no. 31, 315207, 9 pp. https://doi.org/10.1088/0305-4470/31/1/002
  6. Z. Chen and F. Zhu, On pseudo-Riemannian Lie algebra: a class of new Lie admissible algebras, arxiv:0807.0936, 2008.
  7. B. A. Dubrovin and S. P. Novikov, Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitman averaging method, Dokl. Akad. Nauk SSSR 270 (1983), no. 4, 781-785.
  8. B. A. Dubrovin and S. P. Novikov, Poisson brackets of hydrodynamic type, Dokl. Akad. Nauk SSSR 279 (1984), no. 2, 294-297.
  9. I. M. Gel′fand and L. A. Dikii, Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-De Vries equations, Russ. Math. Surv. 30 (1975), 77-113. https://doi.org/10.1070/RM1975v030n05ABEH001522
  10. I. M. Gel′fand and L. A. Dikii, A Lie algebra structure in the formal calculus of variations, Funktsional. Anal. i Prilozen. 10 (1976), no. 1, 18-25.
  11. I. M. Gelfand and I. Ya Dorfman, Hamiltonian operators and algebraic structures as- sociated with them, Funktsional. Anal. i Prilozhen. 13 (1979), no. 4, 13-30.
  12. J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
  13. A. A. Sagle, Nonassociative algebras and Lagrangian mechanics on homogeneous spaces, Algebras Groups Geom. 2 (1985), no. 4, 478-494.
  14. E. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov. Mat. Obshch. 12 (1963), 303-358.
  15. X. Xu, Hamiltonian superoperators, J. Phys. A 28 (1995), no. 6, 1681-1698. https://doi.org/10.1088/0305-4470/28/6/021
  16. X. Xu, Variational calculus of supervariables and related algebraic structures, J. Algebra 223 (2000), no. 2, 396-437. https://doi.org/10.1006/jabr.1999.8064
  17. X. Xu, Hamiltonian operators and associative algebras with a derivation, Lett. Math. Phys. 33 (1995), no. 1, 1-6. https://doi.org/10.1007/BF00750806
  18. F. Zhu and Z. Chen, Bilinear forms on fermionic Novikov algebras, J. Phys. A 40 (2007), no. 18, 4729-4738. https://doi.org/10.1088/1751-8113/40/18/004