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A NOTE ON PSEUDO-RIEMANNIAN ASSOCIATIVE

FERMIONIC NOVIKOV ALGEBRAS

Zhiqi Chen and Fuhai Zhu

Abstract. In this paper, we focus on pseudo-Riemannian associative
fermionic Novikov algebras. We prove that the underlying Lie algebras
of pseudo-Riemannian associative fermionic Novikov algebras are 2-step

nilpotent and that pseudo-Riemannian associative fermionic Novikov al-
gebras are 3-step nilpotent. Moreover, we construct a pseudo-Riemannian
associative fermionic Novikov algebra in dimension 14, which is not a

Novikov algebra. It implies that the inverse proposition of Corollary 2
in the paper “Pseudo-Riemannian Novikov algebras” [J. Phys. A: Math.
Theor. 41 (2008), 315207] does not hold.

1. Underlying Lie algebras of pseudo-Riemannian associative
fermionic Novikov algebras

Gel′fand and Dikii gave a bosonic formal variational calculus in [9, 10] and
Xu gave a fermionic formal variational calculus in [15]. Moreover, motivated by
the super-symmetric theory, a formal variational calculus of super-variables was
given by Xu in [16] which combines the bosonic theory of Gel′fand-Dikii and the
fermionic theory. Fermionic Novikov algebras are related to the Hamiltonian
super-operator in terms of this theory. A fermionic Novikov algebra A is a
vector space over a field F with a bilinear product (x, y) 7→ xy satisfying

(1.1) (xy)z − x(yz) = (yx)z − y(xz),

(1.2) (xy)z = −(xz)y

for any x, y, z ∈ A. It corresponds to the following Hamiltonian operator H of
type 0 [16]:

(1.3) H0
α,β =

∑
γ∈I

(aγα,βΦγ(2) + bγα,βΦγD), aγα,β , b
γ
α,β ∈ R.
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Fermionic Novikov algebras are a special class of left-symmetric algebras which
only satisfy equation (1.1). Left-symmetric algebras are a class of non-associa-
tive algebras arising from the study of affine manifolds, affine structures and
convex homogeneous cones [4, 14]. The commutator of a left-symmetric A

(1.4) [x, y] = xy − yx

defines a Lie algebra, which is called the underlying Lie algebra of A.
A pseudo-Riemannian connection is a pseudo-metric connection such that

the torsion is zero and parallel translations preserve the bilinear form on the
tangent spaces [13]. The corresponding structure on a fermionic Novikov al-
gebra A is a non-degenerate symmetric bilinear form f : A × A → F such
that

(1.5) f(xy, z) + f(y, xz) = 0 for any x, y, z ∈ A.

Such a fermionic Novikov algebra is called a pseudo-Riemannian fermionic
Novikov algebra. It is given in [18] that the underlying Lie algebra of a pseudo-
Riemannian fermionic Novikov algebra is a pseudo-Riemannian Lie algebra. A
Lie algebra g over a field F is called a pseudo-Riemannian Lie algebra if there
is a bilinear product (x, y) 7→ xy such that, for any x, y, z ∈ g,

xy − yx = [x, y], [xy, z] + [x, zy] = 0(1.6)

and a non-degenerate symmetric bilinear form ( , ) on g such that

(1.7) (xy, z) + (y, xz) = 0.

The notion of pseudo-Riemannian Lie algebras was introduced by Boucetta in
[1], which are strongly related to pseudo-Riemannian Poisson manifolds (for
more details see [2]).

In this note, we focus on pseudo-Riemannian associative fermionic Novikov
algebras, which are pseudo-Riemannian fermionic Novikov algebras satisfying

(1.8) (xy)z = x(yz) for any x, y, z ∈ A.

It is proved in [6] that any pseudo-Riemannian Lie algebra is solvable if the char-
acteristic of F is zero. For pseudo-Riemannian associative fermionic Novikov
algebras, we have:

Theorem 1.1. The underlying Lie algebra of any pseudo-Riemannian asso-
ciative fermionic Novikov algebra is 2-step nilpotent.

Proof. Let A be a pseudo-Riemannian associative fermionic Novikov algebra
and f the corresponding bilinear form. Since (xy)z = x(yz) for any x, y, z ∈ A,
we can represent the product only by xyz. Furthermore for any x, y, z, d ∈ A,

f(xyz, d) = −f(yz, xd) = f(z, yxd) = −f(yxz, d).

It follows that xyz = −yxz by the nondegeneracy of f . Then we have

(1.9) xyz = yzx = zxy = −yxz = −zyx = −xzy.
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By (1.9), we know that xy belongs to the center of the underlying Lie algebra.
It follows that the underlying Lie algebra is 2-step nilpotent. □

2. Pseudo-Riemannian associative fermionic Novikov algebras and
Novikov algebras

A Novikov algebra was introduced as a left-symmetric algebra with com-
mutative right multiplication operators: an algebra is a Novikov algebra if its
product satisfies equation (1.1) and

(2.1) (xy)z = (xz)y.

It connects with the Poisson brackets of hydrodynamic type [7, 8] and Hamil-
tonian operators in the formal variational calculus [11, 17].

A pseudo-Riemannian Novikov algebra is a Novikov algebra with a non-
degenerate symmetric bilinear form satisfying the equation (1.5). It is proved
in [5] that pseudo-Riemannian Novikov algebras are fermionic Novikov alge-
bras if the characteristic of F is not 2. By [3] or [12], the sets of pseudo-
Riemannian Novikov algebras and pseudo-Riemannian fermionic Novikov alge-
bras are same if F = R and the bilinear forms are positive definite. By [18],
pseudo-Riemannian fermionic Novikov algebras of dimensions up to 4 over C
are Novikov algebras. Nevertheless,

Remark 2.1 ([5]). For dimensions greater than four, we could neither prove
that pseudo-Riemannian fermionic Novikov algebras are Novikov algebras nor
find a pseudo-Riemannian fermionic Novikov algebra which is not a Novikov
algebra.

In the following, we will give a pseudo-Riemannian associative fermionic
Novikov algebra which is not a Novikov algebra. Firstly, we establish a theorem.

Theorem 2.2. Let A be a pseduo-Riemannian associative fermionic Novikov
algebra over a filed F. If the characteristic of F is not 2, then A is 3-step
nilpotent.

Proof. Let A be a pseudo-Riemannian associative fermionic Novikov algebra
and f the corresponding bilinear form. Denote the product (xy)z only by xyz.
By the proof of Theorem 1.1, xy belongs to the center of the underlying Lie
algebra. Then

xyzd = yzxd = −yzdx = −xyzd.

That is, xyzd = 0. Namely A is 3-step nilpotent. □

Example 2.3. Assume that A is a pseudo-Riemannian associative fermionic
Novikov algebra, which is not a Novikov algebra. By [5], we must have xyz ̸= 0
for some x, y, z ∈ A. By (1.9), we have xxy = 0 for any x, y ∈ A. If A is
algebraically generated by x, y, z, then it is easy to see that xyz ∈ A⊥ since
xxy = 0 and xyzd = 0 for any x, y, z, d ∈ A. It follows that xyz = 0.
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Assume that xyz ̸= 0 for some x, y, z ∈ A. Then there exists another element
d such that f(xyz, d) = a ̸= 0. In the following, assume that A is algebraically
generated by x, y, z, d. Without loss of generality, let a = 1. By the equation
(1.5), we know that xyd, xzd, yzd are not zero and

(2.2) f(xyz, d) = −f(xyd, z) = −f(yzd, x) = f(xzd, y) = 1.

Let V1 be a subspace of A linearly generated by x, y, z, d. Furthermore,
assume that uu = 0 for any u ∈ V1. By the linearity of products, we have that

uv = −vu for any u, v ∈ V1.

It is easy to see that xy, xz, xd, yz, yd, zd are not zero. In fact, assume that
xy = 0. Then

f(xyz, d) = f(zxy, d) = −f(xy, zd) = 0.

It is a contradiction. Similar to the others.
Moreover, x, y, z, d, xy, xz, xd, yz, yd, zd, xyz, xyd, xzd, yzd are linearly inde-

pendent. In fact, assume that there exist ai for 1 ≤ i ≤ 14 such that

a1x+ a2y + a3z + a4d

+a5xy + a6xz + a7xd+ a8yz + a9yd+ a10zd

+a11xyz + a12xyd+ a13xzd+ a14yzd = 0.

Multiplying xy on the left of the above equation, we have

a3xyz + a4xyd = 0.

It follows that

a3 = f(a3xyz, d) = f(a3xyz + a4xyd, d) = 0

since f(xyd, d) = 0. Similarly, we have a1 = a2 = a3 = a4 = 0. Then the
equation is

a5xy + a6xz + a7xd+ a8yz + a9yd+ a10zd

+a11xyz + a12xyd+ a13xzd+ a14yzd = 0.

Multiplying x on the left of the above equation, we have

a8xyz + a9xyd+ a10xzd = 0.

It follows that

a8 = f(a8xyz, d) = f(a8xyz + a9xyd+ a10xzd, d) = 0.

Similarly, we have a5 = a6 = a7 = a8 = a9 = a10 = 0. Then the equation is

a11xyz + a12xyd+ a13xzd+ a14yzd = 0.

It follows that

a11 = f(a11xyz, d) = f(a11xyz + a12xyd+ a13xzd+ a14yzd, d) = 0.
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Similarly, we have that a11 = a12 = a13 = a14 = 0. It proves the claim of the
linear independence. Also it is easy to get that

(2.3) f(xy, zd) = f(yz, xd) = −f(xz, yd) = −1.

In addition putting f(u, v) = 0 except the eqs. (2.2) and (2.3), we have con-
structed a pseudo-Riemannian associative fermionic Novikov algebra of dimen-
sion 14. It is not a Novikov algebra since (xy)z = 0 for any x, y, z ∈ A if A is
a pseudo-Riemannian Novikov algebra [5].
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