References
- J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino (1989), Special Issue, 143-163.
- J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. https://doi.org/10.1007/BF01942061
- B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.
- V. Cortes, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp.
- A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
- S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/s10440-008-9241-3
- S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. https://doi.org/10.1088/0264-9381/4/5/026
- S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NJ, 1991.
- M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. https://doi.org/10.1307/mmj/1028999604
- B. Sahin, slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) (2011), no. 1, 93-105.
- B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165. https://doi.org/10.4310/jdg/1214433303
-
B. Watson, G,
$G^{1}$ -Riemannian submersions and nonlinear gauge field equations of general relativity, Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.
Cited by
- ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS vol.51, pp.6, 2014, https://doi.org/10.4134/BKMS.2014.51.6.1749
- Pointwise almost h-semi-slant submanifolds vol.26, pp.12, 2015, https://doi.org/10.1142/S0129167X15500998
- Slant Riemannian submersions from Sasakian manifolds vol.22, pp.2, 2016, https://doi.org/10.1016/j.ajmsc.2015.12.002
- Conformal semi-slant submersions vol.14, pp.07, 2017, https://doi.org/10.1142/S0219887817501146
- H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS vol.53, pp.2, 2016, https://doi.org/10.4134/BKMS.2016.53.2.441
- Conformal semi-invariant submersions vol.19, pp.02, 2017, https://doi.org/10.1142/S0219199716500115
- Semi-Slant Submersions from Almost Product Riemannian Manifolds vol.49, pp.3, 2016, https://doi.org/10.1515/dema-2016-0029
- Semi-slant Riemannian map 2017, https://doi.org/10.2989/16073606.2017.1368732
- SEMI-SLANT SUBMERSIONS vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.951
- Anti-Invariant Semi-Riemannian Submersions from Almost Para-Hermitian Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/720623
- Almost h-semi-slant Riemannian maps to almost quaternionic Hermitian manifolds vol.17, pp.06, 2015, https://doi.org/10.1142/S021919971550008X