DOI QR코드

DOI QR Code

H-SLANT SUBMERSIONS

  • Received : 2010.11.02
  • Published : 2012.03.31

Abstract

In this paper, we define the almost h-slant submersion and the h-slant submersion which may be the extended version of the slant submersion [11]. And then we obtain some theorems which come from the slant submersion's cases. Finally, we construct some examples for the almost h-slant submersions and the h-slant submersions.

Keywords

References

  1. J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino (1989), Special Issue, 143-163.
  2. J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. https://doi.org/10.1007/BF01942061
  3. B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.
  4. V. Cortes, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp.
  5. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
  6. S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/s10440-008-9241-3
  7. S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. https://doi.org/10.1088/0264-9381/4/5/026
  8. S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NJ, 1991.
  9. M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
  10. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. https://doi.org/10.1307/mmj/1028999604
  11. B. Sahin, slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) (2011), no. 1, 93-105.
  12. B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165. https://doi.org/10.4310/jdg/1214433303
  13. B. Watson, G, $G^{1}$-Riemannian submersions and nonlinear gauge field equations of general relativity, Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.

Cited by

  1. ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS vol.51, pp.6, 2014, https://doi.org/10.4134/BKMS.2014.51.6.1749
  2. Pointwise almost h-semi-slant submanifolds vol.26, pp.12, 2015, https://doi.org/10.1142/S0129167X15500998
  3. Slant Riemannian submersions from Sasakian manifolds vol.22, pp.2, 2016, https://doi.org/10.1016/j.ajmsc.2015.12.002
  4. Conformal semi-slant submersions vol.14, pp.07, 2017, https://doi.org/10.1142/S0219887817501146
  5. H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS vol.53, pp.2, 2016, https://doi.org/10.4134/BKMS.2016.53.2.441
  6. Conformal semi-invariant submersions vol.19, pp.02, 2017, https://doi.org/10.1142/S0219199716500115
  7. Semi-Slant Submersions from Almost Product Riemannian Manifolds vol.49, pp.3, 2016, https://doi.org/10.1515/dema-2016-0029
  8. Semi-slant Riemannian map 2017, https://doi.org/10.2989/16073606.2017.1368732
  9. SEMI-SLANT SUBMERSIONS vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.951
  10. Anti-Invariant Semi-Riemannian Submersions from Almost Para-Hermitian Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/720623
  11. Almost h-semi-slant Riemannian maps to almost quaternionic Hermitian manifolds vol.17, pp.06, 2015, https://doi.org/10.1142/S021919971550008X