DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Pyridinolysis of Diethyl Isothiocyanophosphate in Acetonitrile

  • Received : 2012.01.11
  • Accepted : 2012.02.15
  • Published : 2012.03.20

Abstract

The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of diethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles exhibit the two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with rate-limiting expulsion of the isothiocyanate leaving group from a trigonal bipyramidal pentacoordinated intermediate. The relatively large ${\beta}_x$ values with more basic and less basic pyridines imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb.

Keywords

References

  1. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
  2. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  3. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  4. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  5. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  6. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
  7. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  8. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  9. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  10. Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889. https://doi.org/10.5012/bkcs.2011.32.3.889
  11. Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. 1964, 3591. https://doi.org/10.1039/jr9640003591
  12. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8.
  13. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  14. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45. https://doi.org/10.1002/9780470171837.ch2
  15. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  16. Ritchie, C. D. Solute Solvent Interactions; Marcel- Dekker: New York, 1969; p 228.
  17. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  18. Taft, R. W. Steric Effect in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York, 1956; Chapter 3.
  19. Exner, O. Correlation Analysis in Chemistry: Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.
  20. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  21. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  22. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963, 6970.
  23. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459. https://doi.org/10.1021/jo00054a033
  24. Castro, E. A.; Leandro, L.; Millan, P.; Santos, J. G. J. Org. Chem. 1999, 64, 1953. https://doi.org/10.1021/jo982063u
  25. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2001, 66, 6000. https://doi.org/10.1021/jo0100695
  26. Ramirez, F. Acc. Chem. Res. 1968, 1, 168. https://doi.org/10.1021/ar50006a002
  27. Perozzi, E. F.; Martin, J. C.; Paul, I. C. J. Am. Chem. Soc. 1975, 96, 6735. https://doi.org/10.1021/ja00828a032
  28. Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894. https://doi.org/10.1021/ja00409a046
  29. McDowell, R. S.; Streitwieser, A. J. Am. Chem. Soc. 1985, 107, 5849 https://doi.org/10.1021/ja00307a003
  30. Lee, I.; Kim, C. K.; Lee, B.-S.; Ha, T-K. THEOCHEM 1993, 279, 191. https://doi.org/10.1016/0166-1280(93)90066-K
  31. Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375. https://doi.org/10.5012/bkcs.2011.32.4.1375
  32. Bernat, J.; Kristian, P.; Guspanova, J.; Imrich, J.; Busova, T. Collect. Czech. Chem. Commun. 1977, 62, 1491. https://doi.org/10.1135/cccc19971491

Cited by

  1. Anilinolysis of Diethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1089
  2. Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2260
  3. Anilinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2769