DOI QR코드

DOI QR Code

Time-Dependent Density Functional Theory Study on Cyclopentadithiophene-Benzothiadiazole-Based Push-Pull-Type Copolymers for New Design of Donor Materials in Bulk Heterojunction Organic Solar Cells

  • Ku, Ja-Min (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Dae-Kyun (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Ryu, Taek-Hee (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Jung, Eun-Hwan (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lansac, Yves (GREMAN) ;
  • Jang, Yun-Hee (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
  • Received : 2011.12.05
  • Accepted : 2012.02.08
  • Published : 2012.03.20

Abstract

Push-pull-type copolymers - low-band-gap copolymers of electron-rich fused-ring units (such as cyclopentadithiophene; CPDT) and electron-deficient units (such as benzothiadiazole; BT) - are promising donor materials for organic solar cells. Following a design principles proposed in our previous study, we investigate the electronic structure of a series of new CPDTBT derivatives with various electron-withdrawing groups using the time-dependent density functional theory and predict their power conversion efficiency from a newlydeveloped protocol using the Scharber diagram. Significantly improved efficiencies are expected for derivatives with carbonyl [C=O], carbonothioyl [C=S], dicyano [$C(CN)_2$] and dicyanomethylene [C=$C(CN)_2$] groups, but these polymers with no long alkyl side chain attached to them are likely to be insoluble in most organic solvents and inapplicable to low-cost solution processes. We thus devise several approaches to attach alkyl side chains to these polymers while keeping their high efficiencies.

Keywords

References

  1. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. https://doi.org/10.1126/science.270.5243.1789
  2. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. https://doi.org/10.1002/adfm.200500211
  3. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature Mater. 2005, 4, 864. https://doi.org/10.1038/nmat1500
  4. Thompson, B. C.; Frechet, J. M. J. Angew. Chem. Int. Ed. 2008, 47, 58. https://doi.org/10.1002/anie.200702506
  5. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109, 5868. https://doi.org/10.1021/cr900182s
  6. Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323. https://doi.org/10.1002/adma.200801283
  7. Muhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884. https://doi.org/10.1002/adma.200600160
  8. Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Muhlbacher, D.; Scharber, M.; Brabec, C. Macromolecules 2007, 40, 1981. https://doi.org/10.1021/ma062376o
  9. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222. https://doi.org/10.1126/science.1141711
  10. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nature Mater. 2007, 6, 497. https://doi.org/10.1038/nmat1928
  11. Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295. https://doi.org/10.1002/adma.200602496
  12. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732. https://doi.org/10.1021/ja0771989
  13. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nature Photonics 2009, 3, 297. https://doi.org/10.1038/nphoton.2009.69
  14. Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W.; Peng, J.; Cao, Y. Appl. Phys. Lett. 2008, 92, 033307. https://doi.org/10.1063/1.2836266
  15. Hellstrom, S.; Zhang, F.; Inganas, O.; Andersson, M. R. Dalton Trans. 2009, 10032.
  16. Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 16144-16145. https://doi.org/10.1021/ja806687u
  17. Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649. https://doi.org/10.1038/nphoton.2009.192
  18. Huo, L.; Hou, J.; Zhang, S.; Chen, H.-Y.; Yang, Y. Angew. Chem. Int. Ed. 2010, 49, 1500. https://doi.org/10.1002/anie.200906934
  19. 19. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010, 22, E135. https://doi.org/10.1002/adma.200903528
  20. Zou, Y.; Najari, A.; Berrouard, P.; Beaupre, S.; Aich, B. R.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2010, 132, 5330. https://doi.org/10.1021/ja101888b
  21. Ku, J.; Lansac, Y.; Jang, Y. H. J. Phys. Chem. C 2011, 115, 21508. https://doi.org/10.1021/jp2062207
  22. Abdo, N. I.; Ku, J.; El-Shehawy, A. A.; Min, J.-K.; El-Barbary, A. A.; Jang, Y. H.; Lee, J.-S. to be submitted.
  23. Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier, R. A. J. Org. Chem. 1999, 64, 7419.
  24. Bouzzine, S. M.; Makayssi, A.; Hamidi, M.; Bouachrine, M. J. Mol. Struct.: THEOCHEM 2008, 851, 254. https://doi.org/10.1016/j.theochem.2007.11.023
  25. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789. https://doi.org/10.1002/adma.200501717
  26. Song, S.; Jin, Y.; Park, S. H.; Cho, S.; Kim, I.; Lee, K.; Heeger, A. J.; Suh, H. J. Mater. Chem. 2010, 20, 6517. https://doi.org/10.1039/c0jm00772b
  27. Jaguar, version 6.5; Schrodinger, LLC: New York, NY, 2005.
  28. Greeley, B. H.; Russo, T. V.; Mainz, D. T.; Friesner, R. A.; Langlois, J.-M.; Goddard, W. A., III; Donnelly, R. E., Jr.; Ringalda, M. N. J. Chem. Phys. 1994, 101, 4028. https://doi.org/10.1063/1.467520
  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, F. R.; Montgomery, J. A. F.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, F. M.; Iyengar, S. S.; Tomasi, F.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsufi, G.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, G.; Klene, M.; Li, X.; Know, J. E.; Hratchian, G. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, F.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cmmi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dnnenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; K., R.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifoord, S.; Coislowski, J.; Stefanov, B. B.; Liu, G.; liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Jognson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
  30. Coffin, R. C.; Peet, J.; Rogers, J. T.; Bazan, G. C. Nature Chem. 2009, 1, 657. https://doi.org/10.1038/nchem.403
  31. Chen, H.-Y.; Hou, J.; Hayden, A. E.; Yang, H.; Houk, K. N.; Yang, Y. Adv. Mater. 2010, 22, 371. https://doi.org/10.1002/adma.200902469
  32. Yue, W.; Zhao, Y.; Shao, S.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. J. Mater. Chem. 2009, 19, 2199. https://doi.org/10.1039/b818885h

Cited by

  1. Resonance Raman spectroscopy and imaging of push–pull conjugated polymer–fullerene blends vol.3, pp.23, 2015, https://doi.org/10.1039/C5TC00847F
  2. Density Functional Theoretical and Time-dependent Density Functional Theoretical Study on Thiophene-Benzothiadiazole-based Polymers vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10069
  3. Palladium-Assisted Reaction of 2,2-Dialkylbenzimidazole and Its Implication on Organic Solar Cell Performances pp.1932-7455, 2015, https://doi.org/10.1021/acs.jpcc.5b04434
  4. Effect of the Nature of the Core on the Properties of the Star-Shaped Compounds Containing Bicarbazolyl Moieties vol.120, pp.2, 2016, https://doi.org/10.1021/acs.jpcc.5b10570
  5. N-Alkylthienopyrroledione versus benzothiadiazole pulling units in push–pull copolymers used for photovoltaic applications: density functional theory study vol.18, pp.2, 2016, https://doi.org/10.1039/C5CP06075C
  6. D–A–D-type narrow-bandgap small-molecule photovoltaic donors: pre-synthesis virtual screening using density functional theory vol.18, pp.22, 2016, https://doi.org/10.1039/C5CP07536J
  7. Revealing resonance effects and intramolecular dipole interactions in the positional isomers of benzonitrile-core thermally activated delayed fluorescence materials vol.7, pp.30, 2012, https://doi.org/10.1039/c9tc02742d