DOI QR코드

DOI QR Code

Role of Diffusion in the Kinetics of Reversible Enzyme-catalyzed Reactions

  • Szabo, Attila (Laboratory of Chemical Physics, National Institute of Digestive and Kidney Diseases, National Institutes of Health) ;
  • Zhou, Huan-Xiang (Department of Physics and Institute of Molecular Biophysics, Florida State University)
  • Received : 2011.09.16
  • Accepted : 2012.01.06
  • Published : 2012.03.20

Abstract

The accurate expression for the steady-state velocity of an irreversible enzyme-catalyzed reaction obtained by Shin and co-workers (J. Chem. Phys. 2001, 115, 1455) is generalized to allow for the rebinding of the product. The amplitude of the power-law ($t^{-1/2}$) relaxation of the free- and bound-enzyme concentrations to steady-state values is expressed in terms of the steady-state velocity and the intrinsic (chemical) rate constants. This result is conjectured to be exact, even though our expression for the steady-state velocity in terms of microscopic parameters is only approximate.

Keywords

References

  1. Zhou, H.-X. J. Phys. Chem. B 1997, 101, 6642-6651 https://doi.org/10.1021/jp971208i
  2. Kim, H.; Yang, M.; Choi, M.-U.; Shin, K. J. J. Chem. Phys. 2001, 115, 1455. https://doi.org/10.1063/1.1381058
  3. Park, S.; Agmon, N. J. Phys. Chem. B 2008, 112, 5977-5987. https://doi.org/10.1021/jp075941d
  4. Gopich, I. V.; Szabo, A. J. Chem. Phys. 2002, 117, 507-517. https://doi.org/10.1063/1.1482701
  5. Zhou, H.-X. J. Phys. Chem. Lett. 2010, 1, 1973-1976. https://doi.org/10.1021/jz100683t
  6. Zhou, H.-X. Biophys. J. 2011, 100, 912-921. https://doi.org/10.1016/j.bpj.2011.01.002
  7. Haldane, J. B. S. Enzymes; Longmans, Green and Co.: London, 1930.
  8. Gopich, I. V.; Szabo, A. Chem. Phys. 2002, 289, 91-102.
  9. Naumann, W.; Shokhirev, N. V.; Szabo, A. Phys. Rev. Lett. 1997, 79, 3074-3077. https://doi.org/10.1103/PhysRevLett.79.3074
  10. Zhou, H.-X.; Szabo, A. Biophys. J. 1996, 71, 2440-2457. https://doi.org/10.1016/S0006-3495(96)79437-7
  11. Zhou, H.-X.; Szabo, A. J. Phys. Chem. 1996, 100, 2597-2604. https://doi.org/10.1021/jp952376i
  12. Dudko, O. K.; Szabo, A. J. Phys. Chem. B 2005, 109, 5891-5894. https://doi.org/10.1021/jp044433q
  13. Dudko, O. K.; Szabo, A.; Ketter, J.; Wightman, R. M. J. Electroanal Chem. 2006, 586, 18-22. https://doi.org/10.1016/j.jelechem.2005.09.016
  14. Berezhkovskii, A. M.; Szabo, A.; Zhou, H. X. J. Chem. Phys. 2011, 135, 075103. https://doi.org/10.1063/1.3609973
  15. Zhou, H. X.; Szabo, A. Phys. Rev. Lett. 2004, 93, 178101. https://doi.org/10.1103/PhysRevLett.93.178101

Cited by

  1. Diffusion modifies the connectivity of kinetic schemes for multisite binding and catalysis vol.110, pp.49, 2013, https://doi.org/10.1073/pnas.1319943110
  2. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics vol.141, pp.14, 2014, https://doi.org/10.1063/1.4897257
  3. Influence of diffusion on the kinetics of multisite phosphorylation vol.25, pp.1, 2015, https://doi.org/10.1002/pro.2722
  4. Reversible Stochastically Gated Diffusion-Influenced Reactions vol.120, pp.33, 2016, https://doi.org/10.1021/acs.jpcb.6b00152
  5. Catalyzed Bimolecular Reactions in Responsive Nanoreactors vol.7, pp.9, 2017, https://doi.org/10.1021/acscatal.7b01701
  6. Effective reaction rates for diffusion-limited reaction cycles vol.143, pp.21, 2015, https://doi.org/10.1063/1.4936131
  7. On the time dependence of rate coefficients of irreversible reactions between reactants with anisotropic reactivity in liquid solutions vol.145, pp.6, 2016, https://doi.org/10.1063/1.4960174
  8. Mechanistic Insight into the H2O/D2O Isotope Effect in the Proton Transport of the Influenza Virus M2 Protein vol.244, pp.2, 2012, https://doi.org/10.1007/s00232-011-9402-6
  9. General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations. vol.140, pp.18, 2012, https://doi.org/10.1063/1.4874001
  10. Multiple external field effects on diffusion-limited reversible reactions for a geminate pair with no interparticle interactions (8 pages) vol.143, pp.8, 2012, https://doi.org/10.1063/1.4928641
  11. Theory of Diffusion-Influenced Reaction Networks vol.122, pp.49, 2012, https://doi.org/10.1021/acs.jpcb.8b07250