DOI QR코드

DOI QR Code

MS-HEMs: An On-line Management System for High-Energy Molecules at ADD and BMDRC in Korea

  • Received : 2011.10.27
  • Accepted : 2012.01.02
  • Published : 2012.03.20

Abstract

A pioneering version of an on-line management system for high-energy molecules (MS-HEMs) was developed by the ADD and BMDRC in Korea. The current system can manage the physicochemical and explosive properties of virtual and existing HEMs. The on-line MS-HEMs consist of three main routines: management, calculation, and search. The management routine contains a user-friendly interface to store and manage molecular structures and other properties of the new HEMs. The calculation routine automatically calculates a number of compositional and topological molecular descriptors when a new HEM is stored in the MS-HEMs. Physical properties, such as the heat of formation and density, can also be calculated using group additivity methods. In addition, the calculation routine for the impact sensitivity can be used to obtain the safety nature of new HEMs. The impact sensitivity was estimated in a knowledge-based manner using in-house neural network code. The search routine enables general users to find an exact HEM and its properties by sketching a 2D chemical structure, or to retrieve HEMs and their properties by giving a range of properties. These on-line MS-HEMs are expected be powerful tool for deriving novel promising HEMs.

Keywords

References

  1. Cooper, P. W. Explosives Engineering; VCH: New York, 1996.
  2. Miller, R. S. Research on New Energetic Materials. In Decomposition, Combustion, and Detonation Chemistry of Energetic Materials; Brill, T. B., Russell, T. P., Tao, W. C., Wardle, R. B., Eds.; Materials Research Society: Pittsburgh, 1996; p 3.
  3. Agrawal, J. P.; Field, J. E. Prog. Energy Combust. Sci. 1998, 24(1), 1. https://doi.org/10.1016/S0360-1285(97)00015-4
  4. Rice, B. M. Overiew of Research in Energetic Materials. In Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties; Politzer, P., Murray, J. S., Eds.; Elsevier: Amsterdam, 2003; p 1.
  5. Akhavan, J. The Chemistry of Explosives, 2nd ed.; The Royal Society of Chemistry: Cambridge, 2004.
  6. Sikder, A. K.; Sikder, N. J. Hazard. Mater. 2004, 112(1-2), 1. https://doi.org/10.1016/j.jhazmat.2004.04.003
  7. Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 151(2-3), 289. https://doi.org/10.1016/j.jhazmat.2007.10.039
  8. Borman, S. Chem. Eng. News 1994, 72(3), 18. https://doi.org/10.1021/cen-v072n003.p018
  9. Simpson, R. L.; Urtiew, P. A.; Ornellas, D. L.; Moody, G. L.; Scribner, K. J.; Hoffman, D. M. Propellants, Explosives, Pyrotechnics 1997, 22(5), 249. https://doi.org/10.1002/prep.19970220502
  10. Lee, K.-Y.; Chapman, L. B.; Cobura, M. D. J. Energ. Mater. 1987, 5, 27. https://doi.org/10.1080/07370658708012347
  11. Lee, K.-Y.; Chapman, L. B.; Cobura, M. D. J. Energ. Mater. 1987, 5, 27. https://doi.org/10.1080/07370658708012347
  12. Singh, G.; Kapoor, I. P. S.; Tiwari, S. K.; Felix, P. S. J. Hazard. Mater. 2001, 81(1-2), 67. https://doi.org/10.1016/S0304-3894(00)00289-2
  13. Brennan, M. B. Chem. Eng. News 2000, 78(23).
  14. ICT Thermochemical Database, ver. 7.0; Institute of Chemical Technology: Pfinztal, Germany, 2004.
  15. CTfile. http://accelrys.com/products/informatics/cheminformatics/ctfile-formats/no-fee.php (accessed August, 25, 2011).
  16. X3Dmole, 1.0; BMDRC: 2007.
  17. Benson, S. W. Thermochemical Kinetics, 2nd ed.; John Wiley & Sons Inc.: New York, 1976; p 22.
  18. Cohen, N. J. Phys. Chem. Ref. Data 1996, 25(6), 1411. https://doi.org/10.1063/1.555988
  19. Cohen, N.; Benson, S. W. Chem. Rev. 1993, 93(7), 2419. https://doi.org/10.1021/cr00023a005
  20. Salmon, A.; Dalmazzone, D. J. Phys. Chem. Ref. Data 2006, 35(3), 1443. https://doi.org/10.1063/1.2203111
  21. Salmon, A.; Dalmazzone, D. J. Phys. Chem. Ref. Data 2007, 36(1), 19. https://doi.org/10.1063/1.2435401
  22. Ammon, H. L.; Mitchell, S. Propellants, Explosives, Pyrotechnics 1998, 23(5), 260. https://doi.org/10.1002/(SICI)1521-4087(199811)<260::AID-PREP260>3.0.CO;2-F
  23. Ammon, H. L. Propellants, Explosives, Pyrotechnics 2008, 33(2), 92.
  24. Ammon, H. L. Struct. Chem. 2001, 12(3-4), 205. https://doi.org/10.1023/A:1016607906625
  25. Cho, S. G.; No, K. T.; Goh, E. M.; Kim, J. K.; Shin, J. H.; Joo, Y. D.; Seong, S. Bull. Korean Chem. Soc. 2005, 26(3), 399. https://doi.org/10.5012/bkcs.2005.26.3.399
  26. Storm, C. B.; Stine, J. R.; Kramer, J. F. Sensitivity Relationships in Energetic Materials; LA-UR-89-2936, Los Alamos Nat. Lab., NM, 1989.
  27. Storm, C. B.; Stine, J. R.; Kramer, J. F. Sensitivity Relationships in Energetic Materials. In Chemistry and Physics of Energetic Materials, 2nd ed.; Bulusu, S. N., Ed.; Kluwer Academic Publishers: Dordrecht, Netherlands, 1990; p 605.
  28. Ullmann, J. R. J. ACM 1976, 23(1), 31. https://doi.org/10.1145/321921.321925
  29. DBDrawX, 1.0; http://www.bmdrc.org/04_product/07_dbdrawx.asp, BMDRC: Seoul, 2007.

Cited by

  1. Two dimensional analysis between the performance and the sensitivity of methylnitroimidazole derivatives vol.28, pp.6, 2015, https://doi.org/10.5806/AST.2015.28.6.430