DOI QR코드

DOI QR Code

Comparative Study on the Properties Estimation of the Constituents of the Natural Gas and Refrigerant Mixtures Between GERG-2004 Model and Peng-Robinson Equation of State

GERG-2004 모델식과 Peng-Robinson 상태방정식을 이용한 천연가스 및 냉매 구성성분들의 물성 비교연구

  • Kim, Mi-Jin (Department of Chemical Engineering, Kong Ju National University) ;
  • Rho, Jae-Hyun (Department of Chemical Engineering, Hoseo University) ;
  • Kim, Dong-Sun (Department of Chemical Engineering, Kong Ju National University) ;
  • Cho, Jung-Ho (Department of Chemical Engineering, Kong Ju National University)
  • Received : 2011.11.07
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

In this study, we compared with results simulated by EOS(Equation of State) using Peng-Robinson model and GERG-2004 model for estimating vapor pressure, latent heat of vaporation, liquid density, and binary isotherm vapor-liquid equilibrium on pure components composing natural gases. We obtained the simulated results that while EOS using GERG-2004 model is more accurate than EOS using Peng-Robinson model for estimating liquid density, but rather it is less accurate for estimating binary isotherm vapor-liquid equilibrium. On the other hand, the use of Costald model in EOS using Peng-Robinson model for increasing more accuracy to calculate liquid density is almost same as EOS using GERG-2004 model within the error of 1 % compared with experimental data. Also, we confirmed that on the estimation of binary isotherm vapor-liquid equilibrium, EOS using GERG-2004 model is more accurate than EOS using Peng-Robinson model, but they are almost same.

본 연구에서는 천연가스 및 냉매를 구성하고 있는 성분들에 대한 증기압, 증발잠열, 액상의 밀도 및 이성분계 기액 상평형을 추산하는데 있어서 GERG-2004 모델식과 Peng-Robinson(PR) 상태방정식을 서로 비교하였다. 비교결과 GERG-2004모델식은 액상의 밀도 추산에 있어서 PR 상태방정식에 비해 정확성이 높았으나, 기액 상평형 추산에 대한 정확성은 오히려 낮았다. 한편, PR 상태방정식에서 Costald 상관 관계식을 사용하여 액상의 밀도를 추산한 경우에는 실험값과 오차율이 1% 이내로써 GERG-2004 모델식을 사용한 추산 결과와 거의 차이가 없었으며, 증기압과 증발 잠열의 추산은 GERG-2004모델식과 PR 상태방정식이 거의 유사한 결과를 나타냄을 알 수 있었다.

Keywords

References

  1. Peng, D. Y., and Robinson, D. B., "A New Two-constant Equation of State for Fluids and Fluid Mixtures", Ind. Eng. Chem. Fundam., vol. 15, pp. 58-64, 1976.
  2. O. Kunz, R. Klimeck, W. Wagner and M. Jaeschke, "The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures", Association of German Engineers, 2007.
  3. jungho Cho, seongtae Kim, jonggi Park, "PRO/II with PROVISION using the simulation of chemical processes" AJin Book Publishing, 2004.
  4. Twu, C.H., D. Bluck, J.R. Cunningham and J.E.Coon, "A Cubic Equation of State with a New Alpha Function and New Mixing Rule", Fluid Phase Equilibria, vol.69, pp. 33-50, 1991. https://doi.org/10.1016/0378-3812(91)90024-2
  5. R.W. Hankinson, G.H. Thomson and K.R. Brobst, "An Improved Correlation for Densities of Compressed Liquids and Liquid Mixtures, AlChE J., Vol.28, pp.671-676, 1982. https://doi.org/10.1002/aic.690280420
  6. Carl L. Yaws (ed.), "Chemical Properties Handbook", McGraw-Hill, 1999.
  7. Prausnitz, J. M, Molecular, "Thermodynamics of Fluid Phase Equilibria", Prentice-Hall, 2004.
  8. Xu, N., J. Dong, Y. Wang, J. Shi, "High Pressure Vapor Liquid Equilibria at 293 K for Systems. Containing Nitrogen, Methane and Carbon Dioxide" Fluid Phase Equil. vol.81, pp. 175-186, 1992. https://doi.org/10.1016/0378-3812(92)85150-7
  9. T.S. Brown, A.J. Kidnay and E.D. Sloan, "Vapor—liquid equilibria in the carbon dioxide-ethane system" Fluid Phase Equil. vol.40, pp. 169-184, 1988. https://doi.org/10.1016/0378-3812(88)80028-1
  10. R.H. Olds, H.H. Reamer, B.H. Sage, W.N. Lacey "Phase Equilibria in Hydrocarbon Systems: the n-Butane-Carbon Dioxide System" Ind. Eng. Chem., vol41, pp. 475-482, 1949. https://doi.org/10.1021/ie50471a011
  11. L.A. Weber, "Simple apparatus for vapor-liquid equilibrium measurements with data for the binary systems of carbon dioxide with n-butane and isobutane" J. Chem. Eng. Data. vol.34, pp. 171-175, 1989. https://doi.org/10.1021/je00056a007