Abstract
We proposes the method to detect the Hangul character region from natural image using topological structural feature of Hangul grapheme. First, we transform a natural image to a gray-scale image. Second, feature extraction performed with edge and connected component based method, Edge-based method use a Canny-edge detector and connected component based method applied the local range filtering. Next, if features are not corresponding to the heuristic rule of Hangul character, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul character region from mobile image.
본 논문은 한글 모음의 구조적 특징을 이용하여 자연영상에 포함된 한글 문자영역을 검출하는 기법을 제안하였다. 자연 영상을 명도영상으로 변환하고 에지 및 연결요소 기반 방법으로 특징값을 추출하며, 추출된 특징값은 필터링을 수행하여 한글 문자의 특징에 맞지 않는 특징값을 제거하여 한글 문자영역 병합을 위한 후보를 선정한다. 선정된 후보 특징값은 한글 자소 병합 알고리즘으로 하나의 문자로 병합하여 후보 문자영역으로 검출하고, 한글 문자 유형 판별 알고리즘으로 한글 문자영역 여부를 판별함으로서 최종적인 한글 문자영역을 검출한다. 실험결과, 복잡한 배경을 갖고 다양한 환경에서 촬영된 영상에서 한글 문자영역을 효과적으로 검출하였고, 제안한 문자영역 검출 방법은 향상된 검출 결과를 보여 주었다.