DOI QR코드

DOI QR Code

Character Region Detection Using Structural Features of Hangul Vowel

한글 모음의 구조적 특징을 이용한 문자영역 검출 기법

  • Park, Jong-Cheon (Department of Computer Engineering, Chungbuk National University) ;
  • Lee, Keun-Wang (Department of the Multimedia Science, Chungwoon University) ;
  • Park, Hyoung-Keun (Department of Electronic Engineering, Namseoul University)
  • 박종천 (충북대학교 컴퓨터공학과) ;
  • 이근왕 (청운대학교 멀티미디어학과) ;
  • 박형근 (남서울대학교 전자공학과)
  • Received : 2011.01.12
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

We proposes the method to detect the Hangul character region from natural image using topological structural feature of Hangul grapheme. First, we transform a natural image to a gray-scale image. Second, feature extraction performed with edge and connected component based method, Edge-based method use a Canny-edge detector and connected component based method applied the local range filtering. Next, if features are not corresponding to the heuristic rule of Hangul character, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul character region from mobile image.

본 논문은 한글 모음의 구조적 특징을 이용하여 자연영상에 포함된 한글 문자영역을 검출하는 기법을 제안하였다. 자연 영상을 명도영상으로 변환하고 에지 및 연결요소 기반 방법으로 특징값을 추출하며, 추출된 특징값은 필터링을 수행하여 한글 문자의 특징에 맞지 않는 특징값을 제거하여 한글 문자영역 병합을 위한 후보를 선정한다. 선정된 후보 특징값은 한글 자소 병합 알고리즘으로 하나의 문자로 병합하여 후보 문자영역으로 검출하고, 한글 문자 유형 판별 알고리즘으로 한글 문자영역 여부를 판별함으로서 최종적인 한글 문자영역을 검출한다. 실험결과, 복잡한 배경을 갖고 다양한 환경에서 촬영된 영상에서 한글 문자영역을 효과적으로 검출하였고, 제안한 문자영역 검출 방법은 향상된 검출 결과를 보여 주었다.

Keywords

References

  1. N. Ezaki, M. Bulacu, L. Schomaker: Text detection from natural scene images: towards a system for visually impaired persons. In: Proc. of the 17th International Conference on Vol. 2, pp.683-686, 2004
  2. Xiaoqing Liu and Jagath Samarabandu: An Edge-Based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation. In: International Journal of Signal Processing, Vol.3(4), pp.273-280, 2006
  3. Kim, S., Kim D., Y. Ryu, Y., and Kim, G: A Robust License-Plate Extraction Method under Complex Image Conditions, In: Proceedings of International Conference on Pattern Recognition, Vol. 3, pp.216-219, 2002
  4. Smith, M. A. and T. Kanade: Video Skimming for Quick Browsing Based on Audio and Image Characterization. Carnegie Mellon University, Technical Report CMU-CS-95-186, 1995
  5. Chung-Mong Lee, A. Kankanhalli: Automatic Extraction of Characters in Complex Scene Images. International Journal of Pattern Recognition and Artificial Intelligence, Vol.9(1), pp. 67-82, 1995 https://doi.org/10.1142/S0218001495000043
  6. Canny, J.: A Computational Approach to Edge Detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp.679-698, 1986 https://doi.org/10.1109/TPAMI.1986.4767851
  7. Park, Jong Cheon. : Detection Method of Character Region Using Hangul Structure from Natural Image, Department of Computer Engineering, Doctoral Thesis, University of Chungbuk National, 2011
  8. Oh, In. Gwan.: Study on the Extraction of Character and Special Character from Hangeul Documents with English, Master's Thesis, Department of Computer Science, University of Kwangwoon, 1993
  9. C. Yi and Y. Tian :Text String Detection from Natural Scenes by Structure-based Partition and Grouping. In : IEEE Transactions on Image Proc., PMID:21411405, 2011
  10. KAIST Scene Text Database, http://ai.kaist.ac.kr/home/DB/SceneText