DOI QR코드

DOI QR Code

Thermoluminescence Properties of Elpasolite Scintillation Single Crystal

엘파소라이트 섬광형 단결정의 열형광 특성

  • Received : 2011.12.20
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

In this paper, we determined the scintillation and thermoluminescence properties of $Cs_2NaCeBr_6$ elpasolite scintillation crystal. The emission spectrum of $Cs_2NaCeBr_6$ is located in the range of 300 ~ 450 nm, peaking at 377 nm and 400 nm. And, the fluorescence decay time of the crystal is composed two components. The fast component is 140 ns (94%), and the slow component is 880 ns (6%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattices. We determined thermoluminescence parameters of the traps in the crystal. The determined activation energy(E), kinetic order and frequency factor of the traps are 0.67 eV, 1.71 and $2.51{\times}10^8s^{-1}$ respectively. In this crystal, re-combination rate is more dominant phenomenon than the re-trapping rate.

본 논문에서는 $Cs_2NaCeBr_6$ 엘파소라이트 단결정의 섬광 및 열형광 특성에 대하여 조사하였다. $Cs_2NaCeBr_6$의 형광스펙트럼은 $Ce^{3+}$ 이온의 $4f{\rightarrow}5d$ 천이에 따라 파장범위가 300 ~ 450 nm, 피이크 파장은 377 nm 및 400 nm이었다. 형광감쇠시간 특성은 140 ns의 빠른 시간 특성 성분(94%)과 880 ns의 느린 성분(6%)의 2개로 구성된다. 잔광에 기여한 포획준위의 물리적 변수를 열형광측정법에서 측정한 결과, 포획준위의 활성화에너지, 발광차수 및 주파수 인자는 각각 0.67 eV, 1.71 및 $2.51{\times}10^8s^{-1}$이었으며, 이는 여기된 전자의 재포획율보다는 재결합율이 더 우세하기 때문인 것으로 사료된다.

Keywords

References

  1. R. Hofstadter, "Alkali halide scintillation counter", Phys. Rev., vol. 74, pp. 100-101, 1948. https://doi.org/10.1103/PhysRev.74.100
  2. Marvin J. Weber, "Inorganic scintillators: today and tomorrow", J. Lumin., vol. 100, Issues 1-4, pp. 35-45, 2002. https://doi.org/10.1016/S0022-2313(02)00423-4
  3. C.L. Melcher, "Perspectives on the future development of new scintillators", Nucl. Instr. Meth. in Phys. Res. Sec. A, vol. 537, Issues 1-2, pp. 6-14, 2005. https://doi.org/10.1016/j.nima.2004.07.222
  4. Raffaele Scafe, et al., "Si-APD readout for $LaBr_3:Ce$ scintillator", Nucle. Instr. Meth. in Phys. Res. Sec. A, vol. 571, Issues 1-2, pp. 355-357, 2007. https://doi.org/10.1016/j.nima.2006.10.108
  5. Vladimir Rusinov, "Scintillator strip detector with SiPM readout as detector for a TOF system", Nucl. Instr. Meth. in Phys. Res. Sec. A, vol. 623, Issue 1, pp. 380-381, 2010. https://doi.org/10.1016/j.nima.2010.03.008
  6. P. Dorenbos, et al., "Scintillation properties of $RbGd_2Br_7:Ce^{3+}$ Crystals; Fast, efficient, and high density scintillators", Nucl. Instr. Meth., in Phys. Res. Sec. B, vol. 132, pp. 728-731, 1997. https://doi.org/10.1016/S0168-583X(97)00490-4
  7. G. Ren, et al., "Scintillation characteristics of lutetium oxyorthosilicate ($Lu_2SiO_7:Ce$) crystals doped with cerium ions", Nucl. Instr. Meth., in Phys. Res. Sec. A, vol. 531, pp. 560-565, 2004. https://doi.org/10.1016/j.nima.2004.05.083
  8. A. M. Srivastava, et al., "Luminescence of $LuCl_3:Pr$ under inter configurational (4f^2{\rightarrow}4f^15d^1$) and band gap excitations", Optical Mat., vol. 31, pp. 213-217, 2008. https://doi.org/10.1016/j.optmat.2008.03.011
  9. P. A. Rodnyi, "Progress in fast scintillators", Rad. Meas., vol. 33, pp. 605-614, 2001. https://doi.org/10.1016/S1350-4487(01)00068-3
  10. V.N. Makhov, et al., "Spectroscopy of cubic elpasolite Cs2NaYF6 crystals singly doped with $Er^{3+}$ and $Tm^{3+}$ under selective VUV excitation", Optical Mat.erials, vol. 27, Issue 6, pp. 1131-1137, 2005. https://doi.org/10.1016/j.optmat.2004.04.022
  11. A. M. Srivastava, et al., "Scintillating materials, articles employing the same, and methods for their use," U.S. patent number: US 2008/0001086 A1, 2008.
  12. R. Chen, et al., "Analysis of thermally stimulated process", 37, Pergamon Press, Oxford, 1981.
  13. P. W. Bridgman, "The compressibility of thirty metals as a function of pressure and temperature", Proc. Amer. Acad. Arts Sci., vol. 58, pp. 165-242, 1923. https://doi.org/10.2307/20025987
  14. L. M. Bollinger, et al., "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method", Rev. Sci. Instr., vol. 32, pp. 1044-1050, 1961. https://doi.org/10.1063/1.1717610
  15. http://root.cern.ch/drupal/content/users-guide
  16. H. Kunkely and A. Vogler, "Can halides serve as a charge transfer acceptor? Metal-centered and metal-to-ligand charge transfer excitation of cerium(III) halides," Inorganic Chem. Comm., vol. 9, pp. 1-3, 2006. https://doi.org/10.1016/j.inoche.2005.08.017
  17. R. Chen, "Glow curves with general order kinetics", J. Electrochem. Soc., vol. 116, pp. 1254-1257, 1969. https://doi.org/10.1149/1.2412291