DOI QR코드

DOI QR Code

Transposable Elements: No More 'Junk DNA'

  • Kim, Yun-Ji (Department of Nanobiomedical Science, WCU Research Center, Dankook University) ;
  • Lee, Jungnam (Department of Nanobiomedical Science, WCU Research Center, Dankook University) ;
  • Han, Kyudong (Department of Nanobiomedical Science, WCU Research Center, Dankook University)
  • Received : 2012.11.01
  • Accepted : 2012.11.17
  • Published : 2012.12.31

Abstract

Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.

Keywords

References

  1. McClintock B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 1956;21:197-216.
  2. Alzohairy AM, Gyulai G, Jansen RK, Bahieldin A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 2012 Aug 30 [Epub]. http://dx.doi.org/10.1016/j.plasmid.2012.08.001.
  3. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005;437:69-87. https://doi.org/10.1038/nature04072
  4. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921. https://doi.org/10.1038/35057062
  5. Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007;316:222-234. https://doi.org/10.1126/science.1139247
  6. Mizuuchi K. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem 1992;61:1011-1051. https://doi.org/10.1146/annurev.bi.61.070192.005051
  7. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 1993;72:595-605. https://doi.org/10.1016/0092-8674(93)90078-5
  8. Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007;23:183-191. https://doi.org/10.1016/j.tig.2007.02.006
  9. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703. https://doi.org/10.1038/nrg2640
  10. Warnefors M, Pereira V, Eyre-Walker A. Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol Biol Evol 2010;27:1955-1962. https://doi.org/10.1093/molbev/msq084
  11. Moran JV, DeBerardinis RJ, Kazazian HH Jr. Exon shuffling by L1 retrotransposition. Science 1999;283:1530-1534. https://doi.org/10.1126/science.283.5407.1530
  12. Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab 1999;67:183-193. https://doi.org/10.1006/mgme.1999.2864
  13. Venner S, Feschotte C, Biemont C. Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet 2009;25:317-323. https://doi.org/10.1016/j.tig.2009.05.003
  14. Baskaev KK, Buzdin AA. Evolutionary recent insertions of mobile elements and their contribution to the structure of human genome. Zh Obshch Biol 2012;73:3-20.
  15. Lee J, Cordaux R, Han K, Wang J, Hedges DJ, Liang P, et al. Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons. Gene 2007;390:18-27. https://doi.org/10.1016/j.gene.2006.08.029
  16. Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, et al. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 2006;79:41-53. https://doi.org/10.1086/504600
  17. Callinan PA, Wang J, Herke SW, Garber RK, Liang P, Batzer MA. Alu retrotransposition-mediated deletion. J Mol Biol 2005;348:791-800. https://doi.org/10.1016/j.jmb.2005.02.043
  18. Han K, Sen SK, Wang J, Callinan PA, Lee J, Cordaux R, et al. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res 2005;33:4040-4052. https://doi.org/10.1093/nar/gki718
  19. Gilbert N, Lutz-Prigge S, Moran JV. Genomic deletions created upon LINE-1 retrotransposition. Cell 2002;110:315-325. https://doi.org/10.1016/S0092-8674(02)00828-0
  20. O'Donnell KA, Burns KH. Mobilizing diversity: transposable element insertions in genetic variation and disease. Mob DNA 2010;1:21. https://doi.org/10.1186/1759-8753-1-21
  21. Ahmed M, Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012;2012:947089.
  22. Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, et al. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 2006;78:671-679. https://doi.org/10.1086/501028
  23. Carter AB, Salem AH, Hedges DJ, Keegan CN, Kimball B, Walker JA, et al. Genome-wide analysis of the human Alu Yb-lineage. Hum Genomics 2004;1:167-178.
  24. Han K, Xing J, Wang H, Hedges DJ, Garber RK, Cordaux R, et al. Under the genomic radar: the stealth model of Alu amplification. Genome Res 2005;15:655-664. https://doi.org/10.1101/gr.3492605
  25. Cordaux R. The human genome in the LINE of fire. Proc Natl Acad Sci U S A 2008;105:19033-19034. https://doi.org/10.1073/pnas.0810202105
  26. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific retroposon family. J Mol Biol 2005;354:994-1007. https://doi.org/10.1016/j.jmb.2005.09.085
  27. Hancks DC, Kazazian HH Jr. SVA retrotransposons: evolution and genetic instability. Semin Cancer Biol 2010;20:234-245. https://doi.org/10.1016/j.semcancer.2010.04.001
  28. Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE. Natural genetic variation caused by transposable elements in humans. Genetics 2004;168:933-951. https://doi.org/10.1534/genetics.104.031757
  29. Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, et al. Mobile elements create structural variation: analysis of a complete human genome. Genome Res 2009;19:1516-1526. https://doi.org/10.1101/gr.091827.109
  30. Kim HS. Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol Cells 2012; 33:539-544. https://doi.org/10.1007/s10059-012-0037-y
  31. Watkins WS, Rogers AR, Ostler CT, Wooding S, Bamshad MJ, Brassington AM, et al. Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. Genome Res 2003;13:1607-1618. https://doi.org/10.1101/gr.894603
  32. Srikanta D, Sen SK, Huang CT, Conlin EM, Rhodes RM, Batzer MA. An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair. Genomics 2009;93:205-212. https://doi.org/10.1016/j.ygeno.2008.09.016
  33. Sen SK, Huang CT, Han K, Batzer MA. Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res 2007;35:3741-3751. https://doi.org/10.1093/nar/gkm317
  34. Callinan PA, Batzer MA. Retrotransposable elements and human disease. Genome Dyn 2006;1:104-115.
  35. Bergman CM. A proposal for the reference-based annotation of de novo transposable element insertions. Mob Genet Elements 2012;2:51-54. https://doi.org/10.4161/mge.19479
  36. Rogers J, Kochunov P, Zilles K, Shelledy W, Lancaster J, Thompson P, et al. On the genetic architecture of cortical folding and brain volume in primates. Neuroimage 2010;53:1103-1108. https://doi.org/10.1016/j.neuroimage.2010.02.020
  37. Britten RJ. Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci U S A 2010;107: 19945-19948. https://doi.org/10.1073/pnas.1014330107
  38. Boissinot S, Chevret P, Furano AV. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 2000;17:915-928. https://doi.org/10.1093/oxfordjournals.molbev.a026372
  39. Belshaw R, Dawson AL, Woolven-Allen J, Redding J, Burt A, Tristem M. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 2005;79:12507-12514. https://doi.org/10.1128/JVI.79.19.12507-12514.2005
  40. Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011;8:90. https://doi.org/10.1186/1742-4690-8-90
  41. Stewart C, Kural D, Stromberg MP, Walker JA, Konkel MK, Stutz AM, et al. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 2011;7:e1002236. https://doi.org/10.1371/journal.pgen.1002236
  42. Konkel MK, Wang J, Liang P, Batzer MA. Identification and characterization of novel polymorphic LINE-1 insertions through comparison of two human genome sequence assemblies. Gene 2007;390:28-38. https://doi.org/10.1016/j.gene.2006.07.040
  43. Lee J, Ha J, Son SY, Han K. Human genomic deletions generated by SVA-associated events. Comp Funct Genomics 2012; 2012:807270.
  44. Frayne J, Hall L. The gene for the human tMDC I sperm surface protein is non-functional: implications for its proposed role in mammalian sperm-egg recognition. Biochem J 1998; 334(Pt 1):171-176. https://doi.org/10.1042/bj3340171
  45. Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 2008;105:19366-19371. https://doi.org/10.1073/pnas.0807866105
  46. Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet 2008;9:397-405. https://doi.org/10.1038/nrg2337
  47. Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 2011;12: 615-627. https://doi.org/10.1038/nrg3030
  48. Schmitz J, Brosius J. Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 2011;93: 1928-1934. https://doi.org/10.1016/j.biochi.2011.07.014
  49. Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev 2003;17:419-437. https://doi.org/10.1101/gad.1048803
  50. Matlik K, Redik K, Speek M. L1 antisense promoter drives tissue- specific transcription of human genes. J Biomed Biotechnol 2006;2006:71753.
  51. Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-Mosch C, Sverdlov ED. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett 2000;472:191-195. https://doi.org/10.1016/S0014-5793(00)01460-5
  52. Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC. Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One 2009;4:e4456. https://doi.org/10.1371/journal.pone.0004456
  53. Kaer K, Branovets J, Hallikma A, Nigumann P, Speek M. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS One 2011;6:e26099. https://doi.org/10.1371/journal.pone.0026099
  54. Liu B, Alberts BM. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 1995;267:1131-1137. https://doi.org/10.1126/science.7855590
  55. Cui F, Sirotin MV, Zhurkin VB. Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 2011;6:2. https://doi.org/10.1186/1745-6150-6-2
  56. Wu J, Grindlay GJ, Bushel P, Mendelsohn L, Allan M. Negative regulation of the human epsilon-globin gene by transcriptional interference: role of an Alu repetitive element. Mol Cell Biol 1990;10:1209-1216. https://doi.org/10.1128/MCB.10.3.1209
  57. Kondo Y, Issa JP. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J Biol Chem 2003;278: 27658-27662. https://doi.org/10.1074/jbc.M304072200
  58. Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, et al. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 2009;19:221-233.
  59. Huda A, Bowen NJ, Conley AB, Jordan IK. Epigenetic regulation of transposable element derived human gene promoters. Gene 2011;475:39-48. https://doi.org/10.1016/j.gene.2010.12.010
  60. Huda A, Marino-Ramirez L, Jordan IK. Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA 2010;1:2. https://doi.org/10.1186/1759-8753-1-2
  61. Huda A, Tyagi E, Marino-Ramirez L, Bowen NJ, Jjingo D, Jordan IK. Prediction of transposable element derived enhancers using chromatin modification profiles. PLoS One 2011;6:e27513. https://doi.org/10.1371/journal.pone.0027513
  62. Xing J, Hedges DJ, Han K, Wang H, Cordaux R, Batzer MA. Alu element mutation spectra: molecular clocks and the effect of DNA methylation. J Mol Biol 2004;344:675-682. https://doi.org/10.1016/j.jmb.2004.09.058
  63. Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 2010;6:e1000917. https://doi.org/10.1371/journal.pgen.1000917
  64. Matsuda Y, Yamashita S, Lee YC, Niwa T, Yoshida T, Gyobu K, et al. Hypomethylation of Alu repetitive elements in esophageal mucosa, and its potential contribution to the epigenetic field for cancerization. Cancer Causes Control 2012;23:865-873. https://doi.org/10.1007/s10552-012-9955-4
  65. Bae JM, Shin SH, Kwon HJ, Park SY, Kook MC, Kim YW, et al. ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int J Cancer 2012;131:1323-1331. https://doi.org/10.1002/ijc.27369
  66. Piriyapongsa J, Marino-Ramirez L, Jordan IK. Origin and evolution of human microRNAs from transposable elements. Genetics 2007;176:1323-1337.
  67. Han K, Konkel MK, Xing J, Wang H, Lee J, Meyer TJ, et al. Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome. Science 2007;316:238-240. https://doi.org/10.1126/science.1139462

Cited by

  1. Reflections on Lupus 2013: butterflies, wolves and prophecies vol.22, pp.11, 2013, https://doi.org/10.1177/0961203313503914
  2. Foldback Intercoil DNA and the Mechanism of DNA Transposition vol.12, pp.3, 2014, https://doi.org/10.5808/GI.2014.12.3.80
  3. Transposable Elements and Genome Size Variations in Plants vol.12, pp.3, 2014, https://doi.org/10.5808/GI.2014.12.3.87
  4. Chimpanzee-Specific Endogenous Retrovirus Generates Genomic Variations in the Chimpanzee Genome vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0101195
  5. Element and Human Disease vol.14, pp.3, 2016, https://doi.org/10.5808/GI.2016.14.3.70
  6. Exonization of an Intronic LINE-1 Element Causing Becker Muscular Dystrophy as a Novel Mutational Mechanism in Dystrophin Gene vol.8, pp.10, 2017, https://doi.org/10.3390/genes8100253
  7. Identification of transposable elements fused in the exonic region of the olive flounder genome vol.40, pp.7, 2018, https://doi.org/10.1007/s13258-018-0676-2
  8. Exaptation at the molecular genetic level pp.1869-1889, 2018, https://doi.org/10.1007/s11427-018-9447-8