DOI QR코드

DOI QR Code

A Distributed Method for Constructing a P2P Overlay Multicast Network using Computational Intelligence

지능적 계산법을 이용한 분산적 P2P 오버레이 멀티케스트 네트워크 구성 기법

  • 박재성 (수원대학교 정보보호학과)
  • Received : 2012.10.08
  • Accepted : 2012.10.29
  • Published : 2012.12.31

Abstract

In this paper, we propose a method that can construct efficiently a P2P overlay multicast network composed of many heterogeneous peers in communication bandwidth, processing power and a storage size by selecting a peer in a distributed fashion using an ant-colony theory that is one of the computational intelligence methods. The proposed method considers not only the capacity of a peer but also the number of children peers supported by the peer and the hop distance between a multicast source and the peer when selecting a parent peer of a newly joining node. Thus, an P2P multicast overlay network is constructed efficiently in that the distances between a multicast source and peers are maintained small. In addition, the proposed method works in a distributed fashion in that peers use their local information to find a parent node. Thus, compared to a centralized method where a centralized server maintains and controls the overlay construction process, the proposed method scales well. Through simulations, we show that, by making a few high capacity peers support a lot of low capacity peers, the proposed method can maintain the size of overlay network small even there are a few thousands of peers in the network.

본 논문에서는 지능적 계산법인 개미-군집 이론을 응용한 분산적 피어 선택을 통해 통신 대역폭, 데이터 처리 능력 및 저장 용량이 상이한 피어들로 구성된 P2P 오버레이 멀티케스트 네트워크를 효율적으로 구성할 수 있는 방안을 제안한다. 제안 기법은 피어의 용량뿐만 아니라 피어가 서비스하고 있는 자식 노드의 수 및 멀티케스트 소스와 피어 사이의 거리를 고려하여 부모 피어를 선택한다. 따라서 제안기법은 멀티케스트 소스와 피어 사이의 거리를 작게 유지한다는 측면에서 효율적인 네트워크 구성을 가능하게 한다. 또한 제안기법은 특정 서버가 참여 노드의 상태 정보를 이용하는 기존의 중앙집중적 방식에 비해 각 피어들의 로컬 정보를 이용하는 분산적 방식이므로, 참여 노드의 수에 따른 확장성이 우수하다. 모의실험을 통해 제안 기법은 소수의 대용량 피어가 다수의 소용량 피어를 지원함으로써 수천개의 피어가 오버레이 네트워크에 참여하더라도 오버레이 네트워크의 크기를 작게 유지할 수 있다는 것을 보였다.

Keywords

References

  1. Y. Chu, S. Rao, and H. Zhang, "A Case for End System Multicast," IEEE Journal of Selected Areas on Communications, vol. 20, no. 8, pp.1456-1471, October. 2002. https://doi.org/10.1109/JSAC.2002.803066
  2. X. Zhang, J. Liu, B. Li, and Y.-S.P. Yum, "Coolstreaming/Donet: A Data-Driven Overlay Network for Efficient Live Media Streaming," IEEE Infocom, pp.2102- 2111, March 2005.
  3. X. Liao, H. Jin, Y. Lin, L.M. Ni, and D. Deng, "Anysee: Peer-to-Peer Live Streaming," IEEE, Inforcom, pp.1-10, April 2006.
  4. Y. Tang, J.-G. Luo, Q. Zhang, M. Zhang, and S.-Q. Yang, "Deploying P2P Networks for Large Scale Live Video-Streaming Service," IEEE Communications Magazine, vol. 45, no. 6, pp.100-106, June 2007.
  5. H. Xie, Y. R, Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz, "P4P: Provider Portal for Applications," ACM Computer Communication Review, vol. 38, no. 4, pp.351-362, August 2008. https://doi.org/10.1145/1402946.1402999
  6. Y. Chi, Y. Xue, and K. Nahrstedt, "Max-Min Overlay Multicast: Rate Allocation and Tree Construction," IEEE IWQoS, pp.221- 231, June 2004.
  7. K.-W. Kwong, and D. H. K. Tsang, "Building Heterogeneous Peer-to-Peer Networks: Protocol and Analysis," IEEE/ACM Transactions on Networking, vol. 16, no. 2, pp.281-292, April 2008. https://doi.org/10.1109/TNET.2007.899026
  8. M. Dorigo, and L. M. Gambardella, "Ant Colony System : A Cooperative Learning Approach to the Traveling Salesman Problem," IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp.53-66, April 1997. https://doi.org/10.1109/4235.585892
  9. R. V. Kulkarni, A. Forster, and G. K. Venayagamoorthy, "Computational Intelligence in Wireless Sensor Networks: A Survey," IEEE Communications Surveys and Tutorials, vol. 13, no. 1, pp.68-96, January 2001.
  10. M. Wahde, "Biologically Inspired Optimization Method: An Introduction," WIT Press, 2008.
  11. M. Dorigo, M. Birattari, and T. Stiitzle, "Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique," IEEE Computational Intelligence Magazine, vol.1, no. 4, pp.29-39 November 2006.
  12. K. M. Sim, and W. H. Sun, "Ant Colony Optimization for Routing and Load-Balancing: Survey and New Directions," IEEE Transactions on Systems, MAN, and Cybernetics-Part A: Systems and Humans, vol. 33, no.5, pp.560-572, September 2003. https://doi.org/10.1109/TSMCA.2003.817391
  13. V. K. Gurbani, V. Hilt, I.Rimac, M. Tomsu, and E. Marocco, "A Survey of Research on the Application-Layer Traffic Optimization Problem and the Need for Layer Cooperation," IEEE Communications Magazine, vol. 47, no. 8, pp.107-112, August 2009. https://doi.org/10.1109/MCOM.2009.5181900
  14. G. Pandurangan, P. Raghavan, and E. Upfal, "Building Low-Diameter Peer-to-Peer Networks," IEEE Journal of Selected Areas on Communications, vol. 21, no. 6, pp.995-1002, August 2003. https://doi.org/10.1109/JSAC.2003.814666
  15. M. Kim, S. Lam, and D. Lee, "Optimal Distribution Tree for Internet Streaming Media," ACM ICDCS, pp.116-125, May 2003.
  16. Y. CHawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, "Making Gnutella-like P2P Systems Scalable," ACM Sigcomm, pp.407-418, August 2003.
  17. M. Yajnik, J. Kurose, and D. Towsley, "Packet Loss in the Mbone Multicast Network," IEEE Global Internet, November 1996.
  18. M. Meo, and F. Milan, "A Rational Model for Service Rate Allocation in Peer-to-Peer Networks," IEEE Global Internet Symposium, pp.2798-2802, March 2005.
  19. X. Yang, and G. Veciana, "Service Capacity of Peer to Peer Networks," IEEE Infocom, pp.2242-2252, March 2004.
  20. D. K. Vassilakis, and V. Vassalos, "Modeling Real P2P Networks: The Effect of Altruism," IEEE P2P Computing, pp.19-26, September 2007.