DOI QR코드

DOI QR Code

Selection and Characterization of Bacteriocin-Producing Lactobacillus sp. AP 116 from the Intestine of Pig for Potential Probiotics

  • Shin, Myeong-Su (College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Hyun-Jong (College of Veterinary Medicine, Chungbuk National University) ;
  • Jeong, Kyeong-Hyeon (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.) ;
  • Lim, Jong-Cheol (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.) ;
  • Kim, Kyeong-Su (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.) ;
  • Lee, Wan-Kyu (College of Veterinary Medicine, Chungbuk National University)
  • Received : 2011.11.21
  • Accepted : 2012.01.04
  • Published : 2012.02.29

Abstract

The purpose of this study was to isolate bacteriocin-producing bacteria with antagonistic activities against pathogens from the intestines of pigs for probiotic use. Lactobacillus sp. AP 116 possessing antimicrobial property was selected from a total of 500 isolates. The AP 116 strain showed a relatively broad spectrum of inhibitory activity against Listeria monocytogenes, Clostridium perfringens, Pediococcus dextrinicus, and Enterococcus strains using the spot-on-lawn method. Bacteriocin activity remained unchanged after 15 min of heat treatment at $121^{\circ}C$ and exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. Maximum production of bacteriocin occurred at $34^{\circ}C$ when a pH of 6.0 was maintained throughout the culture during fermentation. According to a tricine SDS-PAGE analysis, the molecular weight of the bacteriocin was approximately 5 kDa. The isolate tolerated bile salts and low pH, and also induced nitric oxide (NO) in mouse peritoneal macrophages. Bacteriocin and bacteriocin-producing bacteria, such as Lactobacillus sp. AP 116, could be potential candidates for use as probiotics as an alternative to antibiotics in the pig industry.

Keywords

References

  1. Aasen, I. M., Moretro, T., Katla, T., Axelsson, L., and Storro, I. (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42678. Appl. Microbiol. Biotechnol. 53, 159-166. https://doi.org/10.1007/s002530050003
  2. Bhunia, A. K., Johnson, M. C., Ray, B., and Kalchayamand, N. (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol. 70, 25-33. https://doi.org/10.1111/j.1365-2672.1991.tb03782.x
  3. Byun, J. W., Kim, G. T., Bae, H. S., Baek, Y. J., and Lee, W. K. (2000) In vitro selection of lactic acid bacteria for probiotic use in pigs. Korea J. Vet. Res. 40, 701-706.
  4. Callaway, T. R., Anderson, R. C., Edrington, T. S., Genovese, K. J., Harvey, R. B., Poole, T. L., and Nisbet, D. J. (2004) Recent pre-harvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Anim. Health Res. Rev. 5, 35-47. https://doi.org/10.1079/AHR200462
  5. Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  6. Daba, H., Panadian, S., Gosselin, J. F., Simard, R., Huang, J., and Lacroix, C. (1991) Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57, 3450-3455.
  7. Dahiya, J. P., Wilkie, D. C., Van Kessel, A. G., and Drew, M. D. (2006) Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 129, 60-88. https://doi.org/10.1016/j.anifeedsci.2005.12.003
  8. Damelin, L. H., Dykes, G. A., and Von Holy, A. (1995) Biodiversity of lactic acid bacteria from food-related ecosystems. Microbiol. 83, 13-22.
  9. Diez-Gonzalez, F. (2007) Applications of bacteriocins in livestock. Curr. Issues Intestinal Microbiol. 8, 15-24.
  10. Dibner, J. J. and Richards, J. D. (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poultry Sci. 84, 634-643. https://doi.org/10.1093/ps/84.4.634
  11. Doron, S. and Gorbach, S. L. (2006) Probiotics: their role in the treatment and prevention of disease. Expert. Rev. Anti-Infect. Ther. 4, 261-275. https://doi.org/10.1586/14787210.4.2.261
  12. Du Toit, M., Franz, C. M. A. P., Dicks, L. M. T., and Holzapfel, W. H. (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microbiol. 88, 482-494. https://doi.org/10.1046/j.1365-2672.2000.00986.x
  13. Gillor, O., Kirkup, B. C., and Riley, M. A. (2004) Colicins and microcins: the next generation antimicrobials. Adv. Appl. Microbiol. 54, 129-146. https://doi.org/10.1016/S0065-2164(04)54005-4
  14. Gonzalez, C. F. and Kunka, B. S. (1987) Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microb. 53, 2534-2538.
  15. Heo, S., Lee, S. K., Lee, C. H., Min, S. G., Park, J. S., and Kim, H. Y. (2007) Morphological changes induced in Listeria monocytogenes V7 by a bacteriocin produced by Pediococcus acidilactici. J. Microbiol. Biotechnol. 17, 663-667.
  16. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., and Williams, S. T. (1994) Bergey's Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins. Baltimore, USA
  17. Joerger, R. D. (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci. 82, 640-647. https://doi.org/10.1093/ps/82.4.640
  18. Jung, B. Y., Lim, H. S., and Kim, B. H. (2003) Prevalence of Listeria spp. in cecal contents of livestock. Kor. J. Vet. Publ. Hlth. 27, 41-46.
  19. Kim, S. B., Lim, H. J., Lee, W. K., Hwang, I. G., Woo, G. J., and Ryu, S. R. (2006) PCR-based detection and molecular genotyping of enterotoxigenic Clostridium perfringens isolates from swine diarrhea in Korea. J. Microbiol. Biotechnol. 16, 291-294.
  20. Kosin, B. and Rakshit, S. K. (2006) Microbial and processing criteria for production of probiotics: a review. Food Technol. Biotechnol. 44, 371-379.
  21. Mayr-Harting, A., Hedges, A. J., and Berkeley, R. C. W. (1972) Methods for studying bacteriocins. In: Methods in Microbiology. Bergen, T. and Norris, J. R. (ed) Academic Press, London, pp. 315-422
  22. Mileti, E., Matteoli, G., Iliev, I. D., and Rescigno, M. (2009) Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One 4, e7056. https://doi.org/10.1371/journal.pone.0007056
  23. Mishra, V. and Prasad, D. N. (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 103, 109-115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
  24. Oelschlaeger, T. A. (2010) Mechanisms of probiotic actions. Int. J. Med. Microbiol. 300, 57-62. https://doi.org/10.1016/j.ijmm.2009.08.005
  25. Parente, E. and Ricciardi, A. (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Lett. Appl. Microbiol. 19, 12-15. https://doi.org/10.1111/j.1472-765X.1994.tb00891.x
  26. Parente, E., Ricciardi, A., and Addario, G. (1994) Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140 NWC during batch fermentation. Appl. Microbiol. Biotechnol. 41, 388-394.
  27. Roselli, M., Finamore, A., Britti, M. S., Bosi, P., Oswald, I., and Mengheri, E. (2005) Alternatives to in-feed antibiotics in pigs: evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim. Res. 54, 203-218. https://doi.org/10.1051/animres:2005012
  28. Shin M. S., Han, S. K., Ji, A. R., Kim, K. S., and Lee, W. K. (2008) Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J. Appl. Microbiol. 105, 2203-2212. https://doi.org/10.1111/j.1365-2672.2008.03935.x
  29. Snyder, S. H. and Bredt, D. S. (1992) Biological roles of nitric oxide. Sci. Am. 266, 68-77.
  30. Strompfova, V., Marcioakova, M., Simonova, M., Gancareíkova, S., Jonecova, Z., Scirankova, L., Koseova, J., Buleca, V., Eobanova, K., and Laukova, A. (2006) Enterococcus faecium EK13-an enterocin A-producing strain with probiotic character and its effect in piglets. Anaerobe 12, 242-248. https://doi.org/10.1016/j.anaerobe.2006.09.003
  31. Thevenot, D., Dernburg, A., and Vernozy-Rozand, C. (2006) An updated review of Listeria monocytogenes in the pork meat industry and its products. J. Appl. Microbiol. 101, 7-17. https://doi.org/10.1111/j.1365-2672.2006.02962.x
  32. Warriner, K., Aldsworth, T. G., Kaur, S., and Dodd, C. E. R. (2002) Cross-contamination of carcasses and equipment during pork processing. J. Appl. Microbiol. 93, 169-177. https://doi.org/10.1046/j.1365-2672.2002.01678.x
  33. Yang, R., Johnson, M. C., and Ray, B. (1992) Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl. Environ. Microb. 58, 3355-3359.
  34. Zhang, X., Goncalves, R., and Mosser, D. M. (2008) The isolation and characterization of murine macrophages. Curr. Protoc. Immunol. Chapter 14, Unit 14.1.

Cited by

  1. Purification and partial characterization of M1-UVs300, a novel bacteriocin produced by Lactobacillus plantarum isolated from fermented sausage vol.81, 2017, https://doi.org/10.1016/j.foodcont.2017.05.030