DOI QR코드

DOI QR Code

Numerical Study of Particle Collection and Entrainment in Electrostatic Precipitator

집진기내 입자 포집과 비산 문제에 대한 수치적 연구

  • 김주현 (한양대학교 대학원) ;
  • 권순철 (삼성전자 DMC 연구소 ECO solution team) ;
  • 권기환 (삼성전자 DMC 연구소 ECO solution team) ;
  • 이상환 (한양대학교 기계공학과) ;
  • 이주희 (호서대학교 메카트로닉스공학과)
  • Received : 2011.06.27
  • Accepted : 2011.12.06
  • Published : 2012.02.01

Abstract

A numerical simulation for particle collection efficiency in a wire-plate electrostatic precipitator (ESP) has been performed. Method of characteristics and finite differencing method (MOC-FDM) were employed to obtain electric field and space charge density, and lattice boltzmann method (LBM) was used to predict the Electrohydrodynamic (EHD) flow according to the ion convection. Large eddy simulation (LES) was considered for turbulent flow and particle simulation was performed by discrete element method (DEM) which considered field charging, electric force, drag force and wall-collision. One way coupling from FDM to LBM was used with small and low density particle assumption. When the charged particle collided with the collecting plate, particle-wall collision was calculated for re-entertainment effect and the effect of gravity force was considered.

Keywords

References

  1. J. R. McDonald, W. B. Smith, H. W. Spencer, L. E. Sparks, 1977, "A mathematical model for calculating electrical conditions in wire duct electrostatic precipitation devices," J. Appl. Phys. Vol. 48, pp. 2231-2243. https://doi.org/10.1063/1.324034
  2. A. J. Butler, Z. J. Cendes and J. F. Hoburg, 1999, "Interfacing the finite-element method with the method of characteristics in self-consistent electrostatic field models," IEEE Trans. Ind. Appl. Vol. 25, pp. 533-537. https://doi.org/10.1109/28.31225
  3. E. Lami, F. Mattachini, I. Gallimberti, R. Turri and U. Tromboni, 1995, "A numerical procedure for computing the voltage-current characteristics in electrostatic precipitator configurations," J. Electrostat. Vol. 34, pp. 385-399. https://doi.org/10.1016/0304-3886(94)00030-Z
  4. J. Anagnostopoulos and G. Bergeles, 2002, "Corona discharge simulation in wire-duct electrostatic precipitator," J. Electrost. Vol. 54, pp. 129-147. https://doi.org/10.1016/S0304-3886(01)00172-3
  5. T. Yamamoto, H. R. Velkoff, 1981, "Electrohydrodynamics in an electrostatic precipitator," J. Fluid Mech. Vol. 108, pp. 1-18. https://doi.org/10.1017/S002211208100195X
  6. Y. N. Chun, J.-S. Chang, A. A. Berezin and J. Mizeraczyk, 2007 "Numerical modeling of near corona wire electrohydrodynamics flow in a wire-plate electrostatic precipitator," IEEE. Trans. Diel. Electr. Insul. Vol. 14, pp. 119-124. https://doi.org/10.1109/TDEI.2007.302879
  7. Y. N. Chun, D. S. Yeom, 1996, "On the modeling of electro- hydrodynamic flow in a wire-plate electrostatic precipitator," Korean J. Chem. Eng. Vol. 23, pp. 560-565. https://doi.org/10.1007/BF02706794
  8. N. Farnoosh, K. Adamiak, G.S.P. Castle, 2010, "3-D numerical analysis of EHD turbulent flow and monodisperse charged particle transport and collection in a wire-plate ESP," J. Electrost. 68 , pp. 513-522. https://doi.org/10.1016/j.elstat.2010.07.002
  9. Z. Long, Q. Yao, 2010, "Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators," J. Aerosol. Sci Vol. 41, pp. 702-718. https://doi.org/10.1016/j.jaerosci.2010.04.005
  10. W. Theerachaisupakij, S. Matsusaka , Y. Akashi and H. Masuda, 2003, "Reentrainment of deposited particles by drag and aerosol collision," J. Aerosol. Sci Vol. 34 pp. 261-274. https://doi.org/10.1016/S0021-8502(02)00180-5
  11. X. Zhang, L. Wang and K. Zhu, 2005, "Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator," J. Electrost. Vol. 63, pp. 1057-1071. https://doi.org/10.1016/j.elstat.2005.02.002
  12. J. S. Chang, P. A. Lawless, T. Yamamoto., 1991, "Corona discharge processes," IEEE Trans. Plasma Sci. Vol. 19, pp. 1024-1152.
  13. G. Cooperman., 1981, "A New Current-Voltage Relation for Duct Precipitators Valid for Low and High Current Densities," IEEE Trans. ind. appl IA-17, (2) pp. 236-239. https://doi.org/10.1109/TIA.1981.4503931
  14. S. Chen and G.D. Doolen., 1998, "Lattice Boltzmann Method for fluid flows," Anne. Rev. Fluid Mech Vol. 30, pp. 329-364. https://doi.org/10.1146/annurev.fluid.30.1.329
  15. M. Hecht and J. Harting., 2010 "Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations," J. Stat. Mech. Theor. Exp P01018.
  16. K. N. Premnath, M. J. Pattison, S. Banerjee. ,2009, "Dynamic Subgrid Scale Modeling of Turbulent Flows using Lattice-Boltzmann Method," PHYSICA A, Statistical Mechanics and its Applications Vol. 388, pp. 2640-2658. https://doi.org/10.1016/j.physa.2009.02.041
  17. J. S. Lee, and S. H. Lee 2010, "Boundary treatment for the lattice Boltzmann method using adaptive relaxation times," Computers & Fluids Vol. 39, pp. 900-909. https://doi.org/10.1016/j.compfluid.2010.01.004
  18. P. A. Cundall and O.D.L. Strack., 1979, "A discrete numerical model for granular assemblies," Geotechnique Vol. 29, No. 1 , pp. 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  19. B. K. Mishra ,2003, "A review of computer simulation of tumbling mills by the discrete element method: Part I-comtact mechanics," Int. J. Miner. Process. Vol. 71, pp. 73-93. https://doi.org/10.1016/S0301-7516(03)00032-2
  20. J. H. Kim, G. W. Mulholland, S. R. Kukuck. D.Y.H. Pui, 2005, "Slip Correction Measurements of Certified PSL Nanoparticles Using a Nanometer Differential Movility Analyzer(Nano-DMA) for Knudsen Number From 0.5 to 83," J. Res. Natl. Inst. Stand. Technol. Vol. 110, pp. 31-54. https://doi.org/10.6028/jres.110.005