DOI QR코드

DOI QR Code

LC-MS/MS를 이용한 소변 중 크레아티닌 분석의 측정불확도 평가

Uncertainty evaluation for the determination of creatinine in urine by LC-MS/MS

  • Kim, Jin-Young (Drug Analysis Laboratory, Supreme Prosecutors' Office) ;
  • Kwon, Woon-Yong (Drug Analysis Laboratory, Supreme Prosecutors' Office) ;
  • Suh, Sung-Ill (Drug Analysis Laboratory, Supreme Prosecutors' Office) ;
  • In, Moon-Kyo (Drug Analysis Laboratory, Supreme Prosecutors' Office)
  • 투고 : 2011.12.05
  • 심사 : 2012.01.18
  • 발행 : 2012.02.25

초록

소변 중 크레아티닌의 정상적인 농도범위는 30 - 300 mg/dL로 마약류 감정에 앞서 크레아티닌농도를 측정함으로써 소변 시료의 유효성을 확인하고 있다. 크레아티닌 농도 측정을 위해 액체크로마토그래피-질량분량분석법(LC-MS/MS, liquid chromatography-tandem mass spectrometry)을 사용하였다. 우선 소변 시료를 고속으로 원심분리한 후 10 ${\mu}L$를 분취하여 증류수 390 ${\mu}L$와 혼합하여 희석하였다. 희석된 시료 20 ${\mu}L$에 내부표준물질(5 ${\mu}g/mL$) 30 ${\mu}L$와 acetonitrile 10 ${\mu}L$를 첨가하여 혼합한 후 여과한 시료를 LC-MS/MS에 주입하였다. 크레아티닌은 multi-mode ODS column (Scherzo SM-C18, 75 ${\times}$ 2.0 mm, I.D. 3 ${\mu}m$)을 이용하여 분리하였고, 이동상은 0.2% formic acid와 acetonitrile로 구성되었으며 유속은 150 ${\mu}L$/min으로 하였다. 크레아티닌과 내부표준물질은 [M+H]$^+$ precursor ion과 특징적인 product ion을 한 쌍으로 m/z 114.0${\rightarrow}$ 86.0과 m/z 117.0${\rightarrow}$ 89.1에서 모니터링하여 정량에 적합한 크로마토그램을 얻을 수 있었다. 측정불확도 평가에 앞서 정량분석시 측정값에 영향을 주는 인자들을 찾아내고 각각의 요소들이 측정결과에 어떤 영향을 주는가를 살펴보았다. 시료 희석, 검정 곡선, 재현성, 표준물질의 인자 순으로 측정불확도에 영향을 미치고 있음을 확인하였다. 실제 사람의 소변에서 크레아티닌 농도를 측정한 결과, 측정값에 대한 오차 범위의 상대불확도는 14.2%로 산출되었다.

The objective of the study was to estimate the measurement uncertainty associated with determination of creatinine (Cr) in urine samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Centrifuged urine samples (10 ${\mu}L$) were diluted with 390 ${\mu}L$ of distilled water. To 20 ${\mu}L$ aliquots of diluted urine samples, 30 ${\mu}L$ of internal standard solution (Cr-$d_3$, 5 ${\mu}g/mL$) and 10 ${\mu}L$ of acetonitrile were added and filtered. The samples (1 ${\mu}L$) were introduced into LC-MS/MS with no further pretreatment. Cr was separated on a multi-mode ODS column (Scherzo SM-C18, 75 ${\times}$ 2.0 mm I.D., 3 ${\mu}m$) and quantified by LC-MS/MS operating in MRM mode (Cr, m/z 114.0${\rightarrow}$ 86.0; Cr-$d_3$, m/z 117.0${\rightarrow}$ 89.1). The four factors that contribute uncertainty to the final result were extracted and evaluated. The principal factors of contribution to combined standard uncertainty were sample dilution, calibration curve and repeatability, while the preparation of standard solution was only a minor factor. Relative extended uncertainty of the measured concentration was 14.2% in a real urine sample.

키워드

참고문헌

  1. D. Vearrier, J. A. Curtis and M. I. Greenberg, EXS, 100, 489-517 (2010).
  2. D. B. Barr, L. C. Wilder, S. P. Caudill, A. J. Gonzalez, L. L. Needham and J. L. Pirkle, Environ. Health Persp., 113, 192-200 (2005). https://doi.org/10.1289/ehp.7337
  3. J. To-Figueras, M. Sala, R. Otero, C. Barrot, M. Santiag- Siva, M. Rodamilans, C. Herrero, J. Grimalt and J. Sunyer, Environ. Health Persp., 105, 78-83 (1997). https://doi.org/10.1289/ehp.9710578
  4. J.-H. Lee and R.-M. Ahn, J. Env. Hlth. Sci., 36, 215-221 (2010).
  5. M. L. Smith, A. J. Barnes and M. A. Heustis, J. Anal. Toxicol., 33, 185-189 (2009). https://doi.org/10.1093/jat/33.4.185
  6. U.S. Department of Health and Human Services, Fed. Regist., 69, 19644-19673 (2004).
  7. World Health Organization (WHO), 'Biological Monitoring of Chemical Exposure in the Workplace: guidelines', Vol. 1, Geneva, 1996.
  8. Y. Zuo, Y. Yang, Z. Zhu, W. He and Z. Aydin, Talanta, 83, 1707-1710 (2011). https://doi.org/10.1016/j.talanta.2010.11.073
  9. T. Seki, K. Yamaji, Y. Orita, S. Moriguchi and A. Shinoda, J. Chromatogr. A, 730, 139-145 (1996). https://doi.org/10.1016/0021-9673(95)01218-4
  10. X. B. Chen, A. G. Calder, P. Prasitkusol, D. J. Kyle and M. C. Jayasuriya, J. Mass Spectrom., 33, 130-137 (1998). https://doi.org/10.1002/(SICI)1096-9888(199802)33:2<130::AID-JMS616>3.0.CO;2-Y
  11. D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will and M. Bader, J. Chromatogr. B, 878, 2582-2592 (2010). https://doi.org/10.1016/j.jchromb.2010.04.025
  12. R. Husková, P. Chrastina, T. Adam and P. Schneiderka, Clin. Chim. Acta., 350, 99-106 (2004). https://doi.org/10.1016/j.cccn.2004.07.007
  13. N. Takahashi, G. Boysen, F. Li, Y. Li and J. A. Swenberg, Kidney Int., 71, 266-271 (2007). https://doi.org/10.1038/sj.ki.5002033
  14. E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker and B. D. Hammock, J. Agric. Food Chem., 56, 333-336 (2008). https://doi.org/10.1021/jf072433s
  15. Korea Research Institute of Standards and Science (KRISS), 'Guide to the Expression of Uncertainty in Measurement', 1998.
  16. Korea Laboratory Accreditation Scheme (KOLAS), 'Guide to the Expression of Uncertainty in Measurement (KOLAS-G-002)', 2007.
  17. International Organization for Standardization (ISO), 'Guide to the Expression of Uncertainty in Measurement', ISO, Geneva, Switzerland, 1993.
  18. EURACHEM/CITAC, 'Quantifying Uncertainty in Analytical Measurement', 2nd Ed., EURACHEM/CITAC Guide CG 4, 2000.

피인용 문헌

  1. Effects of Factors Associated with Urine Hippuric Acid Correction Values in Urinary Creatinine by HPLC and Jaffe Method and Specific Gravity HPLC Jaffe Method vol.25, pp.4, 2015, https://doi.org/10.15269/JKSOEH.2015.25.4.493