DOI QR코드

DOI QR Code

A Quasi-Steady Model for Sedimentation and Flushing of Reservoirs

저수지 퇴배사 모의를 위한 준정류모형

  • Choi, Sung-Uk (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Choi, Seong-Wook (Department of Civil & Environmental Engineering, Yonsei University)
  • 최성욱 (연세대학교 토목환경공학과) ;
  • 최성욱 (연세대학교 대학원 토목환경공학과)
  • Received : 2011.10.20
  • Accepted : 2012.01.09
  • Published : 2012.02.29

Abstract

This paper presents a quasi-steady model for numerical simulations of reservoir sedimentation and reservoir flushing. The quasi-steady model is based on the assumption that the flow is steady with time-dependent stream morphology change. This is reasonable because stream morphology changes over a long period, while the flow changes rapidly. The proposed model is first applied to two laboratory experiments for reservoir sedimentation. The channel is shown to be adjusted to new sediment supply at the upstream by changing both the flow depth and slope. Simulated water surface and bed profiles compare favorably to measured data. The model is also applied to reservoir flushing. Good agreement between simulated and measured data is not obtained due to time variation of outflow generated to facilitate the flushing in the experiment. Finally, relationships for equilibrium flow depth and bed slope are proposed and tested through numerical experiments.

본 논문에서는 저수지 퇴사 및 배사현상을 모의하기 위한 준정류 모형을 제시하였다. 준정류 모형은 하상은 시간에 따라 변하지만 유동은 정상류라는 가정에 기초한다. 이것은 유동에 비해 매우 장기간에 걸쳐 하도형태가 변하기 때문에 타당하다. 개발된 모형을 저수지 퇴사에 관한 실내실험에 적용하였다. 수치계산을 통하여 상류측에서 공급되는 유사량에 따라 하도의 수심 및 하상경사가 조정되는 것을 보였다. 수치모의에 의한 수위와 하상고가 실험결과와 잘 일치하는 것을 확인하였다. 또한, 모형을 저수지 배사 현상에 관한 선행 실험 조건에 적용하였다. 이 경우에는 배사를 촉진시키기 위해 실험에서 부정류를 발생시켰기 때문에 준정류 모형에 의한 모의결과가 관측자료와 잘 일치하지 않는 것을 확인하였다. 마지막으로, 유사공급에 따른 평형 수심과 하상경사에 관한 공식을 제시하였으며 수치실험을 통하여 이를 검증하였다.

Keywords

References

  1. 류태상, 윤용진, 이규탁(2010). 기존 댐 생애주기 연장사업 및 저사댐 소개. 한국수자원학회지, 한국수자원학회, 제 43권, 제 4호, pp. 84-88.
  2. Cantelli, A., Paola, C., and Parker, G. (2004). Experiments on upstream migrating erosional narrowing and widening of an incisional channel caused by dam removal. Water Resources Research, AGU, 40(WO 3304). https://doi.org/10.1029/2003WR002940
  3. Fasolato, G., Ronco, P., Langendoen, E.J., and Di Silvio, G. (2011). Validity of uniform flow hypothesis in one-dimensional morphodynamic models. Journal of Hydraulic Engineering, ASCE, Vol. 137, No. 2, 183-195. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000291
  4. Fread, D.L., and Harbaugh, T.E. (1971). Open-channel profiles by Newton's iteration technique. Journal of Hydrology, Vol. 13, No. 1, pp. 70-80. https://doi.org/10.1016/0022-1694(71)90202-2
  5. Garcia, M. (1999). Chapter 6. Sedimentation and erosion hydraulics. Hydraulic Design Handbook. (edited by L.W. Mays), McGraw Hill, NY.
  6. Holly, F.M., and Rahuel, J.L. (1990). New numerical/ physical framework for mobile bed modeling. Part I: Numerical and physical principles. Journal of Hydraulic Research, IAHR, Vol. 28, No. 4, pp. 401-416. https://doi.org/10.1080/00221689009499057
  7. Hotchkiss, R. (1989). Reservoir sedimentation and sediment sluicing: Experimental and numerical analysis. Ph.D. thesis, Department of Civil Engineering, the University of Minnesota, Twin City, MN.
  8. Hotchkiss, R., and Parker, G. (1991). Shock fitting of aggradational profiles due to backwater. Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 9, pp. 1129-1144. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:9(1129)
  9. Kassem, A., and Chaudry, M. (1998). Comparison of coupled and decoupled numerical models for alluvial channels. Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 8, pp. 794-802. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:8(794)
  10. Krishnappan, B. (1985). Modelling of unsteady flows in alluvial streams. Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 2, pp. 257-266. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:2(257)
  11. Lai, J.S. and Shen, H.W. (1996). Flushing sediment through reservoirs. Journal of Hydraulic Research, IAHR, Vol. 34, No. 2, pp. 237-255. https://doi.org/10.1080/00221689609498499
  12. Morris, G.L., Annandale, G., and Hotchkiss, R. (2007). Chapter 12. Reservoir Sedimentation, Sedimentation Engineering (edited by M.H. Garcia), American Society of Civil Engineers, Reston, VA.
  13. Parker, G. (2004). 1d sediment transport morphodyna mics with applications to rivers and turbidity currents, e-book.
  14. Soni, J.P., Garde, R.J., and Ranga Raju, K.G. (1980). Aggradation in stream due to overloading. Journal of the Hydraulics Division, ASCE, Vol. 106, No. 1, pp. 117-132.
  15. Vreugdenhil, C.B., and de Vries, M. (1967). Computations of non-steady bedload transport by a pseudo-viscosity method. Delft Hydraulics Laboratory Publication No. 45, Delft Hydraulics Laboratory, Delft, The Netherland.
  16. Wong, M., and Parker, G. (2006). Reanalysis and correction of bed-load relation of Meyer-Peter and Muller using their own data. Journal of Hydraulic Engineering, ASCE, Vol. 132, No. 11, pp. 1159-1168. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159)

Cited by

  1. Simulation of Long-term Reservoir Sedimentation and Flushing vol.14, pp.4, 2014, https://doi.org/10.9798/KOSHAM.2014.14.4.333
  2. Analysis on the sediment sluicing efficiency by variation of operation water surface elevation at flood season vol.49, pp.12, 2016, https://doi.org/10.3741/JKWRA.2016.49.12.971
  3. Long-Term Simulation of Reservoir Sedimentation Considering Particle-Size Distributions of Suspended Sediment and Bed Materials vol.46, pp.1, 2013, https://doi.org/10.3741/JKWRA.2013.46.1.87