DOI QR코드

DOI QR Code

Dry Etching Characteristics of ZnO Thin Films for the Optoelectronic Device by Using Inductively Coupled Plasma

  • Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2011.09.15
  • Accepted : 2011.11.21
  • Published : 2012.02.25

Abstract

In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$) of ZnO thin films in $N_2/Cl_2$/Ar inductivity coupled plasma. A maximum etch rate and selectivity of 108.8 nm/min and, 3.21, respectively, was obtained for ZnO thin film at a $N_2/Cl_2$/Ar gas mixing ratio of 15:16:4 sccm. The plasmas were characterized by optical emission spectroscopy. The x-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment. An accumulation of low volatile reaction products on the etched surface was also shown. Based on this data, an ion-assisted chemical reaction is proposed as the main etch mechanism for plasmas containing $Cl_2$.

Keywords

References

  1. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001) [DOI: 10.1016/ S0921-5107(00)00604-8].
  2. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, K. Koinuma and Y. Sagawa, Solid State Commun. 103. 459 (1997) [DOI:10.1016/S0038-1098(97)00216-0].
  3. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998) [DOI:10.1016/S0038-1098(97)10145-4].
  4. J. C. Woo, G. H. Kim, J. G. Kim, C. I. Kim, Surf. Coat. Technol. 202, 5705 (2008) [DOI:10.1016/j.surfcoat.2008.06.077].
  5. S. W. Na, M. H. Shin, Y. M. Chung, J.G. Jeung, J. H. Boo, N.E. Lee, Microelectron. Eng. 83, 328 (2006) [DOI:10.1016/ j.mee.2005.09.007].
  6. J. C. Woo, D. S. Um, C. I. Kim, Thin Solid Films 518, 2905 (2010) [DOI:10.1016/j.tsf.2009.10.144].
  7. W. T. Lim, L, Voss, R, Khanna, B. P. Gila, D. P. Norton, S. J. Pearton, F. Ren, Appl. Surf. Sci. 253, 889 (2006) [DOI: 10.1016/ j.apsusc.2006.01.037].
  8. X. Z. Fan, G. Xie, S. P. Chen, S. L. Gao, Q. Z. Shi, Thermochim. Acta. 413, 87 (2004) [DOI:10.1016/j.tca.2003.12.025].
  9. F. Zong, H. Ma, C. Xue, H. Zhuang, Xi. Zhang, H. Xiao, J. Ma, F. Ji, Solid State Commun. 132, 521 (2004) [DOI:10.1016/ j.ssc.2004.09.011].
  10. T. Suda, K. Kakishita, J. Appl. Phys. 99, 076101 (2006) [DOI:10.1063/1.2180541].
  11. N. Tabet, M. Faiz, A. Al-Oteibi, J. Electron Spectrosc. Relat. Phenom. 163, 15 (2008) [DOI:10.1016/j.elspec.2007.11.003].
  12. M. Futsuhara, K. Yoshioka, O. Takai, Thin Solid Films 322, 274 (1998) [DOI:10.1016/S0040-6090(97)00910-3].
  13. J. C. Woo, Y. H. Joo, J. S. Park, C. I. Kim, Trans. Electr. Electron. Mater. 144, 12 (2011). https://doi.org/10.4313/TEEM.2011.12.4.144
  14. J. C. Woo, D. S. Um, C. I. Kim, Thin Solid Films 2905, 518 (2010) [DOI:10.1016/j.tsf.2009.10.144].

Cited by

  1. Investigations of Sol-Gel ZnO Films Nanostructured by Reactive Ion Beam Etching for Broadband Anti-Reflection vol.6, pp.9, 2017, https://doi.org/10.1149/2.0331709jss
  2. Effect of energetic electron beam treatment on Ga-doped ZnO thin films vol.14, pp.6, 2014, https://doi.org/10.1016/j.cap.2014.03.022
  3. Argon metastable and resonant densities in a low-pressure Ar–N2inductively coupled plasma vol.46, pp.45, 2013, https://doi.org/10.1088/0022-3727/46/45/455205