DOI QR코드

DOI QR Code

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Received : 2011.10.25
  • Accepted : 2011.11.02
  • Published : 2012.01.31

Abstract

Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Keywords

References

  1. Archer, S. Y., Meng, S., Shei, A. and Hodin, R. A. (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA. 95, 6791-6796. https://doi.org/10.1073/pnas.95.12.6791
  2. Banwell, C. M., Singh, R., Stewart, P. M., Uskokovic, M. R. and Campbell, M. J. (2003) Antiproliferative signalling by 1,25(OH)2D3 in prostate and breast cancer is suppressed by a mechanism involving histone deacetylation. Recent Results Cancer Res. 164, 83-98. https://doi.org/10.1007/978-3-642-55580-0_5
  3. Bereshchenko, O. R., Gu, W. and Dalla-Favera, R. (2002) Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606-613. https://doi.org/10.1038/ng1018
  4. Biswas, S., Criswell, T. L., Wang, S. E. and Arteaga, C. L. (2006) Inhibition of transforming growth factor-beta signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin. Cancer Res. 12, 4142-4146. https://doi.org/10.1158/1078-0432.CCR-06-0952
  5. Blobel, G. A. (2000) CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood. 95, 745-755.
  6. Brown, R. and Strathdee, G. (2002) Epigenomics and epigenetic therapy of cancer. Trends Mol. Med. 8 (4 Suppl), S43-48. https://doi.org/10.1016/S1471-4914(02)02314-6
  7. Bulavin, D. V., Phillips, C., Nannenga, B., Timofeev, O., Donehower, L. A., Anderson, C. W., Appella, E. and Fornace, A. J. Jr. (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat. Genet. 36, 343-350. https://doi.org/10.1038/ng1317
  8. Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon- Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A. and Richon, V. M. (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165-5170.
  9. Carron, J. A., Fraser, W. D. and Gallagher, J. A. (1997) PTHrP and the PTH/PTHrP receptor are co-expressed in human breast and colon tumours. Br. J. Cancer. 76, 1095-1098. https://doi.org/10.1038/bjc.1997.513
  10. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. and La Thangue, N. B. (2001) Acetylation control of the retinoblastoma tumour-suppressor protein. Nat. Cell Biol. 3, 667-674. https://doi.org/10.1038/35083062
  11. Drummond, D. C., Noble, C. O., Kirpotin, D. B., Guo, Z., Scott, G. K. and Benz, C. C. (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 45, 495-528. https://doi.org/10.1146/annurev.pharmtox.45.120403.095825
  12. Furumai, R., Komatsu, Y., Nishino, N., Khochbin, S., Yoshida, M. and Horinouchi, S. (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA. 98, 87-92. https://doi.org/10.1073/pnas.98.1.87
  13. Gartel, A. L. and Tyner, A. L. (1998) The growth-regulatory role of p21 (WAF1/CIP1). Prog. Mol. Subcell. Biol. 20, 43-71. https://doi.org/10.1007/978-3-642-72149-6_4
  14. Glaser, K. B., Staver, M. J., Waring, J. F., Stender, J., Ulrich, R. G. and Davidsen, S. K. (2003) Gene expression profi ling of multiple histone deacetylase (HDAC) inhibitors: defi ning a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol. Cancer Ther. 2, 151-163. https://doi.org/10.4161/cbt.2.2.349
  15. Gui, C. Y., Ngo, L., Xu, W. S., Richon, V. M. and Marks, P. A. (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA. 101, 1241-1246. https://doi.org/10.1073/pnas.0307708100
  16. Hortobagyi, G. N. (1998) Treatment of breast cancer. N. Engl. J. Med. 339, 974-984. https://doi.org/10.1056/NEJM199810013391407
  17. Johnstone, R. W. and Licht, J. D. (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell. 4, 13-18. https://doi.org/10.1016/S1535-6108(03)00165-X
  18. Joung, K. E., Min, K. N., An, J. Y., Kim, D. K., Kong, G. and Sheen, Y. Y. (2006) Potent in vivo anti-breast cancer activity of IN-2001, a novel inhibitor of histone deacetylase, in MMTV/c-Neu mice. Cancer Res. 66, 5394-5402. https://doi.org/10.1158/0008-5472.CAN-05-3835
  19. Kim, M. S., Blake, M., Baek, J. H., Kohlhagen, G., Pommier, Y. and Carrier, F. (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 63, 7291-8300.
  20. Kim, Y. B., Lee, K. H., Sugita, K., Yoshida, M. and Horinouchi, S. (1999) Oxamfl atin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene. 18, 2461-2470. https://doi.org/10.1038/sj.onc.1202564
  21. Komatsu, Y., Tomizaki, K. Y., Tsukamoto, M., Kato, T., Nishino, N., Sato, S., Yamori, T., Tsuruo, T., Furumai R,, Yoshida, M., Horinouchi, S. and Hayashi, H. (2001) Cyclic hydroxamic-acid-containing peptide 31, a potent synthetic histone deacetylase inhibitor with antitumor activity. Cancer Res. 61, 4459-4466.
  22. Marks, P., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T. and Kelly, W. K. (2011) Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer. 1, 194-202.
  23. Mariadason, J. M., Corner, G. A. and Augenlicht, L. H. (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 60, 4561-4572.
  24. Nakano, K., Mizuno, T., Sowa, Y., Orita, T., Yoshino, T., Okuyama, Y., Fujita, T., Ohtani-Fujita, N, Matsukawa, Y., Tokino, T., Yamagishi, H., Oka, T., Nomura, H. and Sakai, T. (1997) Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line. J. Biol. Chem. 272, 22199-22206. https://doi.org/10.1074/jbc.272.35.22199
  25. Papeleu, P., Vanhaecke, T., Elaut, G., Vinken, M., Henkens, T., Snykers, S. and Rogiers, V. (2005) Differential effects of histone deacetylase inhibitors in tumor and normal cells-what is the toxicological relevance? Crit. Rev. Toxicol. 35, 363-378. https://doi.org/10.1080/10408440590935639
  26. Richon, V. M., Sandhoff, T. W., Rifkind, R. A. and Marks, P. A. (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA. 97, 10014-10019. https://doi.org/10.1073/pnas.180316197
  27. Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T. and Nakanishi, O. (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA. 96, 4592-4597. https://doi.org/10.1073/pnas.96.8.4592
  28. Sambucetti, L. C., Fischer, D. D., Zabludoff, S., Kwon, P. O., Chamberlin, H., Trogani, N., Xu, H. and Cohen, D. (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specifi c chromatin acetylation and antiproliferative effects. J. Biol. Chem. 274, 34940-34947. https://doi.org/10.1074/jbc.274.49.34940
  29. Sowa, Y., Orita, T., Minamikawa, S., Nakano, K., Mizuno, T., Nomura, H. and Sakai, T. (1997) Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem. Biophys. Res. Commun. 241, 142-150. https://doi.org/10.1006/bbrc.1997.7786
  30. Suzuki, T., Ando, T., Tsuchiya, K., Fukazawa, N., Saito, A., Mariko, Y., Yamashita, T. and Nakanishi, O. (1999) Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J. Med. Chem. 42, 3001-3003. https://doi.org/10.1021/jm980565u
  31. Van Lint, C., Emiliani, S. and Verdin, E. (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5, 245-253.
  32. Villar-Garea, A. and Esteller, M. (2004) Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int. J. Cancer 112, 171-178. https://doi.org/10.1002/ijc.20372
  33. Vrana, J. A., Decker, R. H., Johnson, C. R., Wang, Z. , Jarvis, W. D., Richon, V. M., Ehinger, M., Fisher, P. B. and Grant, S. (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene. 18, 7016-7025. https://doi.org/10.1038/sj.onc.1203176
  34. Wade, P. A. (2001) Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum. Mol. Genet. 10, 693-698. https://doi.org/10.1093/hmg/10.7.693
  35. Wittich, S., Scherf, H., Xie, C., Brosch, G., Loidl, P., Gerhäuser, C. and Jung, M. (2002) Structure-activity relationships on phenylalaninecontaining inhibitors of histone deacetylase: in vitro enzyme inhibition, induction of differentiation, and inhibition of proliferation in Friend leukemic cells. J. Med. Chem. 45, 3296-3309. https://doi.org/10.1021/jm0208119
  36. Yang, X. J. (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic. Acids. Res. 32, 959-976. https://doi.org/10.1093/nar/gkh252
  37. Zhou, Q., Melkoumian, Z. K., Lucktong, A., Moniwa, M., Davie, J. R. and Strobl, J. S. (2000) Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J. Biol. Chem. 275, 35256-352563. https://doi.org/10.1074/jbc.M003106200

Cited by

  1. Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor vol.80, 2014, https://doi.org/10.1016/j.ejmech.2014.04.066
  2. Fluorescein Hydrazones as Novel Nonintercalative Topoisomerase Catalytic Inhibitors with Low DNA Toxicity vol.57, pp.21, 2014, https://doi.org/10.1021/jm501263m
  3. Application of Concave Microwells to Pancreatic Tumor Spheroids Enabling Anticancer Drug Evaluation in a Clinically Relevant Drug Resistance Model vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0073345