DOI QR코드

DOI QR Code

Effects of Ginsenosides Rg1 on Osteoblasts Cultured with Ti Particles

  • Lin, Yu (Chinese Orthopedics and Traumatology College, Fujian University of Traditional Chinese Medicine) ;
  • Wu, Yinsheng (Bone Disease Research Institute, Integrative Medicine Institute, Fujian University of Traditional Chinese Medicine) ;
  • He, Jiacheng (Chinese Orthopedics and Traumatology College, Fujian University of Traditional Chinese Medicine) ;
  • Huang, Yunmei (Bone Disease Research Institute, Integrative Medicine Institute, Fujian University of Traditional Chinese Medicine) ;
  • Lin, Yanping (Bone Disease Research Institute, Integrative Medicine Institute, Fujian University of Traditional Chinese Medicine)
  • Received : 2011.08.30
  • Accepted : 2011.11.07
  • Published : 2012.01.31

Abstract

The aim of this study was to explore the role and effect of ginsenosides Rg1 on osteoblasts cultured with Ti particles. Osteoblasts from neonatal rats were cultured with particles and different doses of Rg1, the main active ingredient in ginsenosides Rg1. We found that the COX-2, $PGE_2$, TNF-${\alpha}$, IL-1, and IL -6 concentrations in the medium of cells cultured with Ti particles significantly increased as compared with that of the control cells (p<0.05 or p<0.01). In addition, cells cultured with Ti particles alone exhibited the highest concentrations of these molecules. The $PGE_2$, TNF-${\alpha}$, IL-1, and IL-6 levels in the medium of cells cultured with Rg1 were in between those of the control cells and the cells cultured with Ti particles alone. The IL-1ra level in the group cultured with Ti and medium-dose Rg1 was the highest followed by the cells cultured with Ti and high-dose Rg1 and those cultured with Ti and low-dose Rg1 (p<0.05). In conclusion, ginsenosides can reduce the levels of infl ammatory cytokines produced by osteoblasts on induction with Ti particles and can prevent prosthesis loosening.

Keywords

References

  1. Abrahamsen, B., Shalhoub, V., Larson, E. K., Eriksen, E. F., Beck- Nielsen, H. and Marks, S. C. Jr. (2000) Cytokine RNA levels in transiliac bone biopsies from healthy early postmenopausal women. Bone. 26, 137-145. https://doi.org/10.1016/S8756-3282(99)00260-4
  2. Burger, D., Chicheportiche, R., Giri, J. G. and Dayer, J. M. (1995) The inhibitory activity of human interleukin-1 receptor antagonist is enhanced by type II interleukin-1 soluble receptor and hindered by type I interleukin-1 soluble receptor. J. Clin. Invest. 96, 38-41. https://doi.org/10.1172/JCI118045
  3. Chen, L. L. and Yan, J. (2001) Porphyromonas gingivalis lipopolysaccharide activated bone resorption of osteoclasts by inducing IL-1, TNF, and PGE. Acta. Pharmacol. Sin. 22, 614-618.
  4. Chen, X. (1996) Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin. Exp. Pharmacol. Physiol. 23, 728-732. https://doi.org/10.1111/j.1440-1681.1996.tb01767.x
  5. Crotti, T. N., Smith, M. D., Findlay, D. M., Zreiqat, H., Ahern, M. J., Weedon, H., Hatzinikolous, G., Capone, M., Holding, C. and Haynes, D. R. (2004) Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFkappaB, RANK ligand and osteoprotegerin. Biomaterials. 25, 565-573. https://doi.org/10.1016/S0142-9612(03)00556-8
  6. Dai, M., Zhou, T., Xiong, H., Zou, W., Zhan, P. and Fu, W. (2011) Effect of metal ions Co2+ and Cr3+ on osteoblast apoptosis, cell cycle distribution, and secretion of alkaline phosphatase. Zhongguo. Xiu. Fu. Chong. Jian. Wai. Ke. Za. Zhi. 25, 56-60.
  7. Dickens, D. S., Kozielski, R., Khan, J., Forus, A. and Cripe, T. P. (2002) Cyclooxygenase-2 expression in pediatric sarcomas. Pediatr. Dev. Pathol. 5, 356-364. https://doi.org/10.1007/s10024-002-0005-1
  8. Dinarello, C. A. (1993) Blocking interleukin-1 in disease. Blood. Purif. 11, 118-127. https://doi.org/10.1159/000170105
  9. Fisher, J., McEwen, H. M., Tipper, J. L., Galvin, A. L., Ingram, J., Kamali, A., Stone, M. H. and Ingham, E. (2004) Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefi ts and potential concerns. Clin. Orthop. Relat. Res. 428, 114-119. https://doi.org/10.1097/01.blo.0000148783.20469.4c
  10. Fleury, C., Petit, A., Mwale, F., Antoniou, J., Zukor, D. J., Tabrizian, M. and Huk, O. L. (2006) Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. Biomaterials. 27, 3351-3360. https://doi.org/10.1016/j.biomaterials.2006.01.035
  11. Gallo, J., Kaminek, P., Ticha, V., Rihakova, P. and Ditmar, R. (2002) Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 146, 21-28. https://doi.org/10.5507/bp.2002.004
  12. Ge, Y. C., Liu, P. and Han, X. C. (1997) Effect of ginsenosides Rbl. Rgl. Re and Rhl on HeLa cells in vitro. J. Pharmacology and Clinics of TCM. 13, 18-21.
  13. Haynes, D. R., Crotti, T. N., Potter, A. E., Loric, M., Atkins, G. J., Howie, D. W. and Findlay, D. M. (2001) The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J. Bone. Joint. Surg. Br. 83, 902-911. https://doi.org/10.1302/0301-620X.83B6.10905
  14. Hu, X. M., Yan, C. K. and Hu, X. M. (2006) Efects of ginsenosides Rgl on apoptosis induced by transient foeal cerebral ischemia in rats. Chin. J. Clinical. Pharm. and. Therapeutics. 11, 192-196.
  15. Jacobs, J. J., Roebuck, K. A., Archibeck, M., Hallab, N. J. and Glant, T. T. (2001) Osteolysis: basic science. Clin. Orthop. Relat. Res. 393, 71-77. https://doi.org/10.1097/00003086-200112000-00008
  16. Jilka, R. L., Hangoc, G., Girasole, G., Passeri, G., Williams, D. C., Abrams, J. S., Boyce, B., Broxmeyer, H. and Manolagas, S. C. (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257, 88-91. https://doi.org/10.1126/science.1621100
  17. Kim, Y. S., Kim, D. S. and Kim, S. I. (1998) Ginsenoside Rh2 and Rh3 induce differentiation of HL-60 cells into granulocytes: modulation of protein kinase C isoforms during differentiation by ginsenoside Rh2. Int. J. Biochem. Cell. Biol. 30, 327-338. https://doi.org/10.1016/S1357-2725(97)00141-6
  18. Kimble, R. B., Vannice, J. L., Bloedow, D. C., Thompson, R. C., Hopfer, W., Kung, V. T., Brownfi eld, C. and Pacifi ci, R. (1994) Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J. Clin. Invest. 93, 1959-1967. https://doi.org/10.1172/JCI117187
  19. Lahera, V., Goicoechea, M., de Vinuesa, S. G., Miana, M., de las Heras, N., Cachofeiro, V. and Luno, J. (2007) Endothelial dysfunction, oxidative stress and infl ammation in atherosclerosis: beneficial effects of statins. Curr. Med. Chem. 14, 243-248. https://doi.org/10.2174/092986707779313381
  20. Lei, T. C., Zhu, W.Y. and Xia, M. Y. (2000) Gensenoside Rg1 has sensitizing effect in chernotherapentic treatment of murine melanoma cell line in vitro. Chinese Jouranal of Dermatology. 33, 338-341.
  21. Li, C. H. (2005) Gensenoside Rg1 induction of apoptosis HL-60 preliminary study. Guangdong. Medicine. 15, 63-65.
  22. LI, Y. N., WU, Y. L. and JIA, Z. H. (2008) The contents and interaction of COX-2 and iNOS in vascular injury of rats with defi ciency of vital energy and efect of ginsenoside. Nat. Prod. Res. Dev. 20, 803-807.
  23. Lu, J. P., Ma, Z. C., Yang, J., Huang, J., Wang, S. R. and Wang, S. Q. (2004) Ginsenoside Rg1-induced alterations in gene expression in TNF-alpha stimulated endothelial cells. Chin. Med. J. (Engl). 117, 871-876.
  24. Mohanty, M. (1996) Cellular basis for failure of joint prosthesis. Biomed. Mater. Eng. 6, 165-172.
  25. Pacifi ci, R., Rifas, L., Teitelbaum, S., Slatopolsky, E., McCracken, R., Bergfeld, M., Lee, W., Avioli, L. V. and Peck, W. A. (1987) Spontaneous release of interleukin 1 from human blood monocytes refl ects bone formation in idiopathic osteoporosis. Proc. Natl. Acad. Sci. USA. 84, 4616-4620. https://doi.org/10.1073/pnas.84.13.4616
  26. Pioletti, D. P., Takei, H., Kwon, S. Y., Wood, D. and Sung, K. L. (1999) The cytotoxic effect of titanium particles phagocytosed by osteoblasts. J. Biomed. Mater. Res. 46, 399-407. https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<399::AID-JBM13>3.0.CO;2-B
  27. Vermes, C., Chandrasekaran, R., Jacobs, J. J., Galante, J. O., Roebuck, K. A. and Glant, T. T. (2001) The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J. Bone. Joint. Surg. Am. 83-A, 201-211.
  28. von Knoch, M., Jewison, D. E., Sibonga, J. D., Sprecher, C., Morrey, B. F., Loer, F., Berry, D. J. and Scully, S. P. (2004) The effectiveness of polyethylene versus titanium particles in inducing osteolysis in vivo. J. Orthop. Res. 22, 237-243. https://doi.org/10.1016/j.orthres.2003.08.013
  29. Wang, Y. K., Zhang, M. L. and Zhang, LB. (2003) Study on ginsenosides induced differentiation of human hepatocellular carcinoma cells. J. Lin. Chuang. Gan. Dan. Bing. Za. Zhi. 19, 242-243.

Cited by

  1. The effects of icariine concentration on osteoclasts bone resorption induced by titanium particlesin vitro vol.2, pp.3, 2015, https://doi.org/10.1093/rb/rbv002
  2. for Inflammation-Related Chronic Diseases: A Review on the Modulations of Multiple Pathways vol.46, pp.05, 2018, https://doi.org/10.1142/S0192415X18500519