DOI QR코드

DOI QR Code

Glutamate Receptor Abnormalities in Schizophrenia: Implications for Innovative Treatments

  • Rubio, Maria D. (Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham) ;
  • Drummond, Jana B. (Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham) ;
  • Meador-Woodruff, James H. (Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham)
  • Received : 2011.10.28
  • Accepted : 2011.11.25
  • Published : 2012.01.31

Abstract

Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specifi c changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.

Keywords

References

  1. Aanonsen, L. M. and Wilcox, G. L. (1986) Phencyclidine selectively blocks a spinal action of N-methyl-D-aspartate in mice. Neurosci. Lett. 67, 191-197. https://doi.org/10.1016/0304-3940(86)90396-4
  2. Aihara, Y., Mashima, H., Onda, H., Hisano, S., Kasuya, H., Hori, T., Yamada, S., Tomura, H., Yamada, Y., Inoue, I., Kojima, I. and Takeda, J. (2000) Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J. Neurochem. 74, 2622-2625.
  3. Akbarian, S., Sucher, N. J., Bradley, D., Tafazzoli, A., Trinh, D., Hetrick, W. P., Potkin, S. G., Sandman, C. A., Bunney, W. E. Jr. and Jones, E. G. (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J. Neurosci. 16, 19-30.
  4. Anggono, V., Clem, R. L. and Huganir, R. L. (2011) PICK1 loss of function occludes homeostatic synaptic scaling. J. Neurosci. 31, 2188-2196. https://doi.org/10.1523/JNEUROSCI.5633-10.2011
  5. Arai, A., Kessler, M., Rogers, G. and Lynch G. (1996) Effects of a memory-enhancing drug on DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus. J. Pharmacol. Exp. Ther. 278, 627-638.
  6. Araque, A., Parpura V., Sanzgiri R. P. and Haydon P. G. (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208-215. https://doi.org/10.1016/S0166-2236(98)01349-6
  7. Arvanov, V. L. and Wang, R. Y. (1999) Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine. J. Pharmacol. Exp. Ther. 289, 1000-1006.
  8. Bar-Peled, O., Ben-Hur, H., Biegon, A., Groner, Y., Dewhurst, S., Furuta, A. and Rothstein J. D. (1997) Distribution of glutamate transporter subtypes during human brain development. J. Neurochem. 69, 2571-2580.
  9. Bats, C., Groc, L. and Choquet, D. (2007) The interaction between Stargazin and PSD-95 regulates AMPA receptor surface traffi cking. Neuron 53, 719-734. https://doi.org/10.1016/j.neuron.2007.01.030
  10. Bellocchio, E. E., Reimer, R. J., Fremeau, R. T. Jr. and Edwards, R. H. (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957-960. https://doi.org/10.1126/science.289.5481.957
  11. Benes, F. M., Todtenkopf, M. S. and Kostoulakos, P. (2001) GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 11, 482-491. https://doi.org/10.1002/hipo.1065
  12. Beneyto, M., Kristiansen, L. V., Oni-Orisan, A., McCullumsmith, R. E. and Meador-Woodruff J. H. (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32, 1888-1902. https://doi.org/10.1038/sj.npp.1301312
  13. Beneyto, M. and Meador-Woodruff, J. H. (2006) Lamina-specifi c abnormalities of AMPA receptor traffi cking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse 60, 585-598. https://doi.org/10.1002/syn.20329
  14. Beneyto, M. and Meador-Woodruff, J. H. (2008) Lamina-specifi c abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology 33, 2175-2186. https://doi.org/10.1038/sj.npp.1301604
  15. Bergeron, R., Meyer, T. M., Coyle, J. T. and Greene, R.W. (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc. Natl. Acad. Sci. USA. 95, 15730-15734. https://doi.org/10.1073/pnas.95.26.15730
  16. Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O'Shea-Greenfi eld, A., Deneris, E. S., Moll, C., Borgmeyer, U., Hollmann, M. and Heinemann, S. (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583-595. https://doi.org/10.1016/0896-6273(90)90213-Y
  17. Bleakman, D. and Lodge, D. (1998) Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37, 1187-1204. https://doi.org/10.1016/S0028-3908(98)00139-7
  18. Boulter, J., Hollmann, M., O'Shea-Greenfi eld, A., Hartley, M., Deneris, E., Maron, C. and Heinemann, S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033-1037. https://doi.org/10.1126/science.2168579
  19. Bredt, D. S. and Nicoll, R. A. (2003) AMPA receptor traffi cking at excitatory synapses. Neuron 40, 361-379. https://doi.org/10.1016/S0896-6273(03)00640-8
  20. Breese, C. R., Freedman, R. and Leonard, S. S. (1995) Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res. 674, 82-90. https://doi.org/10.1016/0006-8993(94)01384-T
  21. Buchanan, R. W. and Carpenter, W. T. (2000) Schizophrenia: Introduction and Overview. In Comprehensive Textbook of Psychiatry, 7th Edition (B. J. Sadock, V. A. Sadock, Eds), pp. 1096-1110. Lippincott, Williams, and Wilkins, Philadelphia.
  22. Buchanan, R. W., Javitt, D. C., Marder, S. R., Schooler, N. R., Gold, J. M., McMahon, R. P., Heresco-Levy, U. and Carpenter, W. T. (2007) The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the effi cacy of glutamatergic agents for negative symptoms and cognitive impairments. Am. J. Psychiatry 164, 1593-1602. https://doi.org/10.1176/appi.ajp.2007.06081358
  23. Carpenter, S. S., Hatchett, A. D. and Fuller, M. A. (2006) Catatonic schizophrenia and the use of memantine. Ann. Pharmacother. 40, 344-346. https://doi.org/10.1345/aph.1G297
  24. Carroll, B. T., Thomas, C. and Jayanti, K. (2006) Amantadine and memantine in catatonic schizophrenia. Ann. Clin. Psychiatry. 18, 133-134. https://doi.org/10.1080/10401230600614710
  25. Chaki, S. (2010) Group II metabotropic glutamate receptor agonists as a potential drug for schizophrenia. Eur. J. Pharmacol. 639, 59-66. https://doi.org/10.1016/j.ejphar.2009.12.041
  26. Chaki, S. and Hikichi, H. (2011) Targeting of metabotropic glutamate receptors for the treatment of schizophrenia. Curr. Pharm. Des. 17, 94-102. https://doi.org/10.2174/138161211795049570
  27. Chen, L., El-Husseini, A., Tomita, S., Bredt, D. S. and Nicoll, R. A. (2003) Stargazin differentially controls the traffi cking of alpha-amino- 3-hydroxyl-5-methyl-4-isoxazolepropionate and kainate receptors. Mol. Pharmacol. 64, 703-706. https://doi.org/10.1124/mol.64.3.703
  28. Chen, L., Chetkovich, D. M., Petralia, R. S., Sweeney, N. T., Kawasaki, Y., Wenthold, R. J., Bredt, D. S. and Nicoll, R. A. (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936-943. https://doi.org/10.1038/35050030
  29. Chung, H. J., Huang, Y. H., Lau, L. F. and Huganir, R. L. (2004) Regulation of the NMDA receptor complex and traffi cking by activitydependent phosphorylation of the NR2B subunit PDZ ligand. J. Neurosci. 24, 10248-10259. https://doi.org/10.1523/JNEUROSCI.0546-04.2004
  30. Citri, A., Bhattacharyya, S., Ma, C., Morishita, W., Fang, S., Rizo, J. and Malenka, R. C. (2010) Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying longterm depression. J. Neurosci. 30, 16437-16452. https://doi.org/10.1523/JNEUROSCI.4478-10.2010
  31. Clem, R. L., Anggono, V. and Huganir, R. L. (2010) PICK1 regulates incorporation of calcium-permeable AMPA receptors during cortical synaptic strengthening. J. Neurosci. 30, 6360-6366. https://doi.org/10.1523/JNEUROSCI.6276-09.2010
  32. Clinton, S. M., Haroutunian, V., Davis, K. L. and Meador-Woodruff J. H. (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am. J. Psychiatry 160, 1100-1109. https://doi.org/10.1176/appi.ajp.160.6.1100
  33. Clinton, SM, Haroutunian, V and Meador-Woodruff, JH (2006) Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia. J. Neurochem. 98, 1114-1125. https://doi.org/10.1111/j.1471-4159.2006.03954.x
  34. Clinton, S. M. and Meador-Woodruff, J. H. (2004) Abnormalities of the NMDA Receptor and Associated Intracellular Molecules in the Thalamus in Schizophrenia and Bipolar Disorder. Neuropsychopharmacology 29, 1353-1362. https://doi.org/10.1038/sj.npp.1300451
  35. Collingridge, G. L., Olsen, R. W., Peters, J. and Spedding, M. (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56, 2-5. https://doi.org/10.1016/j.neuropharm.2008.06.063
  36. Coombs, I. D. and Cull-Candy, S. G. (2009) Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 162, 656-665. https://doi.org/10.1016/j.neuroscience.2009.01.004
  37. Copits, B. A, Robbins, J. S., Frausto, S. and Swanson, G. T. (2011) Synaptic targeting and functional modulation of GluK1 kainate receptors by the auxiliary neuropilin and tolloid-like (NETO) proteins. J. Neurosci. 31, 7334-7340. https://doi.org/10.1523/JNEUROSCI.0100-11.2011
  38. Corti, C., Crepaldi, L., Mion, S., Roth, A. L., Xuereb, J. H. and Ferraguti, F. (2007) Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia. Biol. Psychiatry 62, 747-755. https://doi.org/10.1016/j.biopsych.2006.12.005
  39. Corti, C., Xuereb, J. H., Crepaldi, L., Corsi, M., Michielin, F. and Ferraguti, F. (2011) Altered levels of glutamatergic receptors and $Na^+/K^+$ ATPase-alpha1 in the prefrontal cortex of subjects with schizophrenia. Schizophr. Res. 128, 7-14. https://doi.org/10.1016/j.schres.2011.01.021
  40. Cousins, S. L., Papadakis, M., Rutter, A. R. and Stephenson, F. A. (2008) Differential interaction of NMDA receptor subtypes with the post-synaptic density-95 family of membrane associated guanylate kinase proteins. J. Neurochem. 104, 903-913. https://doi.org/10.1111/j.1471-4159.2007.05067.x
  41. Coyle, J. T. (1996) The glutamatergic dysfunction hypothesis for schizophrenia. Harv. Rev. Psychiatry 3, 241-253. https://doi.org/10.3109/10673229609017192
  42. Crook, J. M., Akil, M., Law, B. C., Hyde, T. M. and Kleinman, J. E. (2002) Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann's area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Mol. Psychiatry 7, 157-164. https://doi.org/10.1038/sj.mp.4000966
  43. Cuadra, A. E., Kuo, S. H., Kawasaki, Y., Bredt, D. S. and Chetkovich, D. M. (2004) AMPA receptor synaptic targeting regulated by stargazin interactions with the Golgi-resident PDZ protein nPIST. J. Neurosci. 24, 7491-7502. https://doi.org/10.1523/JNEUROSCI.1255-04.2004
  44. Cull-Candy, S., Brickley, S. and Farrant, M. (2001) NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327-335. https://doi.org/10.1016/S0959-4388(00)00215-4
  45. Danbolt, N. C. (2001) Glutamate uptake. Prog. Neurobiol. 65, 1-105. https://doi.org/10.1016/S0301-0082(00)00067-8
  46. de Lucena, D., Fernandes, B. S., Berk, M., Dodd, S., Medeiros, D. W., Pedrini, M., Kunz, M., Gomes, F. A., Giglio, L. F., Lobato, M. I., Belmonte-de-Abreu, P. S. and Gama, C. S. (2009) Improvement of negative and positive symptoms in treatment-refractory schizophrenia: a double-blind, randomized, placebo-controlled trial with memantine as add-on therapy to clozapine. J. Clin. Psychiatry 70, 1416-1423. https://doi.org/10.4088/JCP.08m04935gry
  47. De Witte, P., Littleton, J., Parot, P. and Koob, G. (2005) Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. CNS Drugs 19, 517-537. https://doi.org/10.2165/00023210-200519060-00004
  48. Dev, K. K., Nishimune, A., Henley, J. M. and Nakanishi, S. (1999) The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology 38, 635-644. https://doi.org/10.1016/S0028-3908(98)00230-5
  49. Devon, R. S., Anderson, S., Teague, P. W., Muir, W. J, Murray, V., Pelosi, A. J., Blackwood, D. H. and Porteous, D. J. (2001) The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol. Psychiatry 6, 311-314. https://doi.org/10.1038/sj.mp.4000848
  50. Diaz, E. (2010) Regulation of AMPA receptors by transmembrane accessory proteins. Eur. J. Neurosci. 32, 261-268. https://doi.org/10.1111/j.1460-9568.2010.07357.x
  51. Dracheva, S., McGurk, S. R. and Haroutunian, V. (2005) mRNA expression of AMPA receptors and AMPA receptor binding proteins in the cerebral cortex of elderly schizophrenics. J. Neurosci. Res. 79, 868-878. https://doi.org/10.1002/jnr.20423
  52. Dracheva, S., Byne, W., Chin, B. and Haroutunian, V. (2008) Ionotropic glutamate receptor mRNA expression in the human thalamus: absence of change in schizophrenia. Brain Res. 1214, 23-34. https://doi.org/10.1016/j.brainres.2008.03.039
  53. Dracheva, S., Marras, S. A., Elhakem, S. L., Kramer, F. R., Davis, K. L. and Haroutunian, V. (2001) N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am. J. Psychiatry 158, 1400-1410. https://doi.org/10.1176/appi.ajp.158.9.1400
  54. Eastwood, S. L., Burnet, P. W. and Harrison, P. J. (1997a) GluR2 glutamate receptor subunit fl ip and fl op isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptasepolymerase chain reaction (RT-PCR) study. Brain Res. Mol. Brain Res. 44, 92-98. https://doi.org/10.1016/S0169-328X(96)00195-7
  55. Eastwood, S. L., Kerwin, R. W. and Harrison, P. J. (1997b) Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-Daspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol. Psychiatry 41, 636-643. https://doi.org/10.1016/S0006-3223(96)00220-X
  56. Eastwood, S. L., McDonald, B., Burnet, P. W., Beckwith, J. P., Kerwin, R. W. and Harrison, P. J. (1995) Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Brain Res. Mol. Brain Res. 29, 211-223. https://doi.org/10.1016/0169-328X(94)00247-C
  57. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. and Heinemann, S. (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745-748. https://doi.org/10.1038/351745a0
  58. Ehlers, M. D., Fung, E. T., O'Brien, R. J. and Huganir, R. L. (1998) Splice variant-specifi c interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J. Neurosci. 18, 720-730.
  59. Evins, A. E., Amico, E., Posever, T. A., Toker, R. and Goff, D. C. (2002) D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr. Res. 56, 19-23. https://doi.org/10.1016/S0920-9964(01)00220-1
  60. Fell, M. J., Svensson, K. A., Johnson, B. G. and Schoepp, D. D. (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J. Pharmacol. Exp. Ther. 326, 209-217. https://doi.org/10.1124/jpet.108.136861
  61. Fremeau, R. T. Jr, Burman, J., Qureshi, T., Tran, C. H., Proctor, J., Johnson, J., Zhang H., Sulzer D., Copenhagen, D. R., Storm- Mathisen, J., Reimer, R. J., Chaudhry, F. A. and Edwards, R. H. (2002) The identifi cation of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc. Natl. Acad. Sci. USA. 99, 14488-14493. https://doi.org/10.1073/pnas.222546799
  62. Funk, A. J., Rumbaugh, G., Harotunian, V., McCullumsmith, R. E. and Meador-Woodruff, J. H. (2009) Decreased expression of NMDA receptor- associated proteins in frontal cortex of elderly patients with schizophrenia. Neuroreport. 20, 1019-1022. https://doi.org/10.1097/WNR.0b013e32832d30d9
  63. Galici, R., Echemendia, N. G., Rodriguez, A. L. and Conn, P. J. (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J. Pharmacol. Exp. Ther. 315, 1181-1187. https://doi.org/10.1124/jpet.105.091074
  64. Gama, C. S., Antunes, P., Moser, C. and Belmonte-de-Abreu, P. S. (2005) [Memantine as an adjunctive therapy for schizophrenia negative symptoms]. Rev. Bras. Psiquiatr. 27, 257-258.
  65. Gao, X. M., Sakai, K., Roberts, R. C., Conley, R. R., Dean, B. and Tamminga, C. A. (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am. J. Psychiatry 157, 1141-1149. https://doi.org/10.1176/appi.ajp.157.7.1141
  66. Garey, L. J., Von Bussmann, K. A. and Hirsch, S. R. (2006) Decreased numerical density of kainate receptor-positive neurons in the orbitofrontal cortex of chronic schizophrenics. Exp. Brain Res. 173, 234-242. https://doi.org/10.1007/s00221-006-0396-8
  67. Gesemann, M., Lesslauer, A., Maurer, C. M., Schonthaler, H. B. and Neuhauss, S. C. (2010) Phylogenetic analysis of the vertebrate excitatory/ neutral amino acid transporter (SLC1/EAAT) family reveals lineage specificsubfamilies. BMC Evol. Biol. 10, 117. https://doi.org/10.1186/1471-2148-10-117
  68. Ghose, S., Crook, J. M., Bartus, C. L., Sherman, T. G., Herman, M. M., Hyde, T. M., Kleinman, J. E. and Akil, M. (2008) Metabotropic glutamate receptor 2 and 3 gene expression in the human prefrontal cortex and mesencephalon in schizophrenia. Int. J. Neurosci. 118, 1609-1627. https://doi.org/10.1080/00207450802330702
  69. Ghose, S., Gleason, K. A., Potts, B. W., Lewis-Amezcua, K. and Tamminga, C. A. (2009) Differential expression of metabotropic glutamate receptors 2 and 3 in schizophrenia: a mechanism for antipsychotic drug action? Am. J. Psychiatry 166, 812-820. https://doi.org/10.1176/appi.ajp.2009.08091445
  70. Goff, D. C., Henderson, D. C., Evins, A. E. and Amico, E. (1999a) A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biol. Psychiatry. 45, 512-514. https://doi.org/10.1016/S0006-3223(98)00367-9
  71. Goff, D. C., Herz, L., Posever, T., Shih, V., Tsai, G., Henderson, D. C., Freudenreich, O., Evins, A. E., Yovel, I., Zhang, H. and Schoenfeld, D. (2005) A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl) 179, 144-150. https://doi.org/10.1007/s00213-004-2032-2
  72. Goff, D. C., Lamberti, J. S., Leon, A. C., Green, M. F., Miller, A. L., Patel, J., Manschreck, T., Freudenreich, O. and Johnson, S. A. (2008) A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive defi cits in schizophrenia. Neuropsychopharmacology 33, 465-472. https://doi.org/10.1038/sj.npp.1301444
  73. Goff, D. C., Leahy, L., Berman, I., Posever, T., Herz, L., Leon, A. C., Johnson, S. A. and Lynch, G. (2001) A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J. Clin. Psychopharmacol. 21, 484-487. https://doi.org/10.1097/00004714-200110000-00005
  74. Goff, D. C, Tsai, G., Levitt, J., Amico, E., Manoach, D., Schoenfeld, D. A., Hayden, D. L., McCarley, R. and Coyle, J. T. (1999b) A placebocontrolled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch. Gen. Psychiatry 56, 21-27. https://doi.org/10.1001/archpsyc.56.1.21
  75. Goff, D. C., Tsai, G., Manoach, D. S., Flood, J., Darby, D. G. and Coyle, J. T. (1996) D-cycloserine added to clozapine for patients with schizophrenia. Am. J. Psychiatry 153, 1628-1630. https://doi.org/10.1176/ajp.153.12.1628
  76. Goff, D. C. and Wine, L. (1997) Glutamate in schizophrenia: clinical and research implications. Schizophr. Res. 27, 157-168. https://doi.org/10.1016/S0920-9964(97)00079-0
  77. Gonzalez-Maeso, J., Ang, R. L., Yuen, T., Chan, P., Weisstaub, N. V., Lopez-Gimenez, J. F., Zhou, M., Okawa, Y., Callado, L. F., Milligan, G., Gingrich, J. A., Filizola, M., Meana, J. J. and Sealfon, S. C. (2008) Identifi cation of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93-97. https://doi.org/10.1038/nature06612
  78. Granger, A. J., Gray, J. A., Lu, W. and Nicoll, R. A. (2011) Genetic analysis of neuronal ionotropic glutamate receptor subunits. J. Physiol. 589, 4095-4101. https://doi.org/10.1113/jphysiol.2011.213033
  79. Greger, I. H. and Esteban, J. A. (2007) AMPA receptor biogenesis and traffi cking. Curr. Opin. Neurobiol. 17, 289-297. https://doi.org/10.1016/j.conb.2007.04.007
  80. Gupta, D. S., McCullumsmith, R. E., Beneyto, M., Haroutunian, V., Davis, K. L. and Meador-Woodruff, J. H. (2005) Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 57, 123-131. https://doi.org/10.1002/syn.20164
  81. Hammond, J. C., McCullumsmith, R. E., Funk, A. J., Haroutunian, V. and Meador-Woodruff, J. H. (2010) Evidence for abnormal forward traffi cking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology 35, 2110-2119. https://doi.org/10.1038/npp.2010.87
  82. Harrison, P. J., McLaughlin, D. and Kerwin, R. W. (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet. 337, 450-452. https://doi.org/10.1016/0140-6736(91)93392-M
  83. Hashimoto, K., Fukaya, M., Qiao, X., Sakimura, K., Watanabe, M. and Kano, M. (1999) Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J. Neurosci. 19, 6027-6036.
  84. Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., Malinow, R. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262-2267. https://doi.org/10.1126/science.287.5461.2262
  85. Healy, D. J., Haroutunian, V., Powchik, P., Davidson, M., Davis, K. L., Watson, S. J. and Meador-Woodruff, J. H. (1998) AMPA receptor binding and subunit mRNA expression in prefrontal cortex and striatum of elderly schizophrenics. Neuropsychopharmacology 19, 278-286. https://doi.org/10.1038/sj.npp.1395198
  86. Heresco-Levy, U. and Javitt, D. C. (2004) Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr. Res. 66, 89-96. https://doi.org/10.1016/S0920-9964(03)00129-4
  87. Heresco-Levy, U., Javitt, D. C., Ebstein, R., Vass, A., Lichtenberg, P., Bar, G., Catinari, S. and Ermilov, M. (2005) D-serine effi cacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol. Psychiatry. 57, 577-585. https://doi.org/10.1016/j.biopsych.2004.12.037
  88. Hertzmann, M., Reba, R. C. and Kotlyarov, E. V. (1990) Single photon emission computed tomography in phencyclidine and related drug abuse. Am. J. Psychiatry 147, 255-256.
  89. Hollmann, M. and Heinemann, S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
  90. Humphries, C., Mortimer, A., Hirsch, S. and de Belleroche, J. (1996) NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia. Neuroreport 7, 2051-2055. https://doi.org/10.1097/00001756-199608120-00040
  91. Ibrahim, H. M., Hogg, A. J. Jr., Healy, D. J., Haroutunian, V., Davis, K. L. and Meador-Woodruff, J. H. (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am. J. Psychiatry 157, 1811-1823. https://doi.org/10.1176/appi.ajp.157.11.1811
  92. Imre, G. (2007) The preclinical properties of a novel group II metabotropic glutamate receptor agonist LY379268. CNS Drug Rev. 13, 444-464.
  93. Itil, T., Keskiner, A., Kiremitci, N. and Holden, J. M. (1967) Effect of phencyclidine in chronic schizophrenics. Can Psychiatr. Assoc. J. 12, 209-212.
  94. Javitt, D. C. (2002) Glycine modulators in schizophrenia. Curr. Opin. Investig. Drugs 3, 1067-1072.
  95. Javitt, D. C. (1996) Glycine therapy of schizophrenia. Biol. Psychiatry 40, 684-686. https://doi.org/10.1016/0006-3223(96)00269-7
  96. Javitt, D. C. (2006) Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr. Opin. Psychiatry 19, 151-157. https://doi.org/10.1097/01.yco.0000214340.14131.bd
  97. Javitt, D. C., Silipo, G., Cienfuegos, A., Shelley, A. M., Bark, N., Park, M., Lindenmayer, J. P., Suckow, R. and Zukin, S. R. (2001) Adjunctive high-dose glycine in the treatment of schizophrenia. Int. J. Neuropsychopharmacol. 4, 385-391.
  98. Javitt, D. C. and Zukin, S. R. (1991) Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148, 1301-1308. https://doi.org/10.1176/ajp.148.10.1301
  99. Javitt, D. C., Zylberman, I., Zukin, S. R., Heresco-Levy, U., Lindenmayer, J. P. (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am. J. Psychiatry 151, 1234-1236. https://doi.org/10.1176/ajp.151.8.1234
  100. Jentsch, J. D. and Roth, R. H. (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20, 201-225. https://doi.org/10.1016/S0893-133X(98)00060-8
  101. Jordan, G. R., McCulloch, J., Shahid, M., Hill, D. R., Henry, B. and Horsburgh, K. (2005) Regionally selective and dose-dependent effects of the ampakines Org 26576 and Org 24448 on local cerebral glucose utilisation in the mouse as assessed by 14C-2-deoxyglucose autoradiography. Neuropharmacology 49, 254-264. https://doi.org/10.1016/j.neuropharm.2005.03.011
  102. Joyce, J. N. and Meador-Woodruff, J. H. (1997) Linking the family of D2 receptors to neuronal circuits in human brain: insights into schizophrenia. Neuropsychopharmacology 16, 375-384. https://doi.org/10.1016/S0893-133X(96)00276-X
  103. Kalashnikova, E., Lorca, R. A., Kaur, I., Barisone, G. A., Li, B., Ishimaru, T., Trimmer, J. S., Mohapatra, D. P. and Diaz, E. (2010) SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65, 80-93. https://doi.org/10.1016/j.neuron.2009.12.021
  104. Kanai, Y., Smith, C. P. and Hediger, M. A. (1993) A new family of neurotransmitter transporters: the high-affi nity glutamate transporters. FASEB J. 7, 1450-1459.
  105. Kanuma, K., Aoki, T. and Shimazaki, Y. (2010) Recent patents on positive allosteric modulators of the metabotropic glutamate 5 receptor as a potential treatment for schizophrenia. Recent Pat. CNS Drug Discov. 5, 23-34.
  106. Kato, A. S., Gill, M. B., Yu, H., Nisenbaum, E. S. and Bredt, D. S. (2010) TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci. 33, 241-248. https://doi.org/10.1016/j.tins.2010.02.004
  107. Keifer, J. and Zheng, Z. (2010) AMPA receptor traffi cking and learning. Eur. J. Neurosci. 32, 269-277. https://doi.org/10.1111/j.1460-9568.2010.07339.x
  108. Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B. and Seeburg, P. H. (1990) A family of AMPAselective glutamate receptors. Science 249, 556-560. https://doi.org/10.1126/science.2166337
  109. Kerwin, R., Patel, S. and Meldrum, B. (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39, 25-32. https://doi.org/10.1016/0306-4522(90)90219-T
  110. Kessels, H. W. and Malinow, R. (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340-350. https://doi.org/10.1016/j.neuron.2009.01.015
  111. Kornhuber, J., Bormann, J., Retz, W., Hubers, M. and Riederer, P. (1989) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur. J. Pharmacol. 166, 589-590. https://doi.org/10.1016/0014-2999(89)90384-1
  112. Kristiansen, L. V., Beneyto, M., Haroutunian, V. and Meador-Woodruff, J. H. (2006) Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol. Psychiatry 11, 737-747, 705. https://doi.org/10.1038/sj.mp.4001844
  113. Kristiansen, L. V., Bakir, B., Haroutunian, V. and Meador-Woodruff, J. H. (2010a) Expression of the NR2B-NMDA receptor traffi cking complex in prefrontal cortex from a group of elderly patients with schizophrenia. Schizophr. Res. 119, 198-209. https://doi.org/10.1016/j.schres.2010.02.1069
  114. Kristiansen, L. V., Patel, S. A., Haroutunian, V. and Meador-Woodruff, J. H. (2010b) Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse 64, 495-502. https://doi.org/10.1002/syn.20754
  115. Krivoy, A., Weizman, A., Laor, L., Hellinger, N., Zemishlany, Z. and Fischel, T. (2008) Addition of memantine to antipsychotic treatment in schizophrenia inpatients with residual symptoms: A preliminary study. Eur. Neuropsychopharmacol. 18, 117-121. https://doi.org/10.1016/j.euroneuro.2007.07.008
  116. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B. Jr. and Charney, D. S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199-214. https://doi.org/10.1001/archpsyc.1994.03950030035004
  117. Lahti, A. C., Holcomb, H. H., Medoff, D. R. and Tamminga, C. A. (1995) Ketamine activates psychosis and alters limbic blood fl ow in schizophrenia. Neuroreport 6, 869-872. https://doi.org/10.1097/00001756-199504190-00011
  118. Lane, H. Y., Chang, Y. C., Liu, Y. C., Chiu, C. C. and Tsai, G. E. (2005) Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch. Gen. Psychiatry 62, 1196-1204. https://doi.org/10.1001/archpsyc.62.11.1196
  119. Lane, H. Y., Lin, C. H., Huang, Y. J., Liao, C. H., Chang, Y. C. and Tsai, G. E. (2010) A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 13, 451-460. https://doi.org/10.1017/S1461145709990939
  120. Lane, H. Y., Liu, Y. C., Huang, C. L., Chang, Y. C., Liau, C. H., Perng, C. H. and Tsai, G. E. (2008) Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol. Psychiatry 63, 9-12. https://doi.org/10.1016/j.biopsych.2007.04.038
  121. Lane, H. Y., Huang, C. L., Wu, P. L., Liu, Y. C., Chang, Y. C., Lin, P. Y., Chen, P. W. and Tsai, G. (2006) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol. Psychiatry 60, 645-649. https://doi.org/10.1016/j.biopsych.2006.04.005
  122. Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L. and Innis, R. (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol. Psychiatry 46, 56-72. https://doi.org/10.1016/S0006-3223(99)00067-0
  123. Lau, C. G. and Zukin, R. S. (2007) NMDA receptor traffi cking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8, 413-426.
  124. Lavezzari, G., McCallum, J., Dewey, C. M. and Roche, K. W. (2004) Subunit-specifi c regulation of NMDA receptor endocytosis. J. Neurosci. 24, 6383-6391. https://doi.org/10.1523/JNEUROSCI.1890-04.2004
  125. Le Corre, S., Harper, C. G., Lopez, P., Ward, P. and Catts, S. (2000) Increased levels of expression of an NMDARI splice variant in the superior temporal gyrus in schizophrenia. Neuroreport 11, 983-986. https://doi.org/10.1097/00001756-200004070-00017
  126. Lehre, K. P., Levy, L. M., Ottersen, O. P., Storm-Mathisen, J. and Danbolt, N. C. (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15, 1835-1853.
  127. Lerma, J. (2003) Roles and rules of kainate receptors in synaptic transmission. Nat. Rev. Neurosci. 4, 481-495. https://doi.org/10.1038/nrn1118
  128. Letts, V. A, Felix, R., Biddlecome, G. H., Arikkath, J., Mahaffey, C. L., Valenzuela, A., Bartlett, F. S., 2nd, Mori, Y., Campbell, K. P. and Frankel, W. N. (1998) The mouse stargazer gene encodes a neuronal $Ca^{2+}$-channel gamma subunit. Nat. Genet. 19, 340-347. https://doi.org/10.1038/1228
  129. Li, D., Specht, C. G., Waites, C. L., Butler-Munro, C., Leal-Ortiz, S., Foote, J. W., Genoux, D., Garner, C. C. and Montgomery, J. M. (2011) SAP97 directs NMDA receptor spine targeting and synaptic plasticity. J. Physiol. 589, 4491-4510. https://doi.org/10.1113/jphysiol.2011.215566
  130. Lieberman, J. A., Papadakis, K., Csernansky, J., Litman, R., Volavka, J., Jia, X. D. and Gage, A. (2009) A randomized, placebo-controlled study of memantine as adjunctive treatment in patients with schizophrenia. Neuropsychopharmacology 34, 1322-1329. https://doi.org/10.1038/npp.2008.200
  131. Lin, J. W., Wyszynski, M., Madhavan, R., Sealock, R., Kim, J. U. and Sheng, M. (1998) Yotiao, a novel protein of neuromuscular junction and brain that interacts with specifi c splice variants of NMDA receptor subunit NR1. J. Neurosci. 18, 2017-2027.
  132. Lu, W. and Ziff, E. B. (2005) PICK1 interacts with ABP/GRIP to regulate AMPA receptor traffi cking. Neuron. 47, 407-421. https://doi.org/10.1016/j.neuron.2005.07.006
  133. Mah, S. J., Cornell, E., Mitchell, N. A. and Fleck, M. W. (2005) Glutamate receptor traffi cking: endoplasmic reticulum quality control involves ligand binding and receptor function. J. Neurosci. 25, 2215-2225. https://doi.org/10.1523/JNEUROSCI.4573-04.2005
  134. Malinow, R. and Malenka, R. C. (2002) AMPA receptor traffi cking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103-126. https://doi.org/10.1146/annurev.neuro.25.112701.142758
  135. Masson, J., Sagne, C., Hamon, M. and El Mestikawy, S. (1999) Neurotransmitter transporters in the central nervous system. Pharmacol. Rev. 51, 439-464.
  136. McCullumsmith, R. E., Kristiansen, L. V., Beneyto, M., Scarr, E., Dean, B. and Meador-Woodruff J. H. (2007) Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res. 1127, 108-118. https://doi.org/10.1016/j.brainres.2006.09.011
  137. Meador-Woodruff, J. H., Davis, K. L. and Haroutunian, V. (2001a) Abnormal kainate receptor expression in prefrontal cortex in schizophrenia. Neuropsychopharmacology 24, 545-552. https://doi.org/10.1016/S0893-133X(00)00189-5
  138. Meador-Woodruff, J. H., Hogg, A. J. Jr. and Smith, R. E. (2001b) Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res. Bull. 55, 631-640. https://doi.org/10.1016/S0361-9230(01)00523-8
  139. Milton, I. D., Banner, S. J., Ince, P. G., Piggott, N. H., Fray, A. E., Thatcher, N., Horne, C. H. and Shaw, P. J. (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Brain Res. Mol. Brain Res. 52, 17-31. https://doi.org/10.1016/S0169-328X(97)00233-7
  140. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A. and Levitt, P. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53-67. https://doi.org/10.1016/S0896-6273(00)00085-4
  141. Moghaddam, B. and Adams, B. W. (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281, 1349-1352. https://doi.org/10.1126/science.281.5381.1349
  142. Moghaddam, B., Adams, B., Verma, A. and Daly, D. (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17, 2921-2927.
  143. Mueller, H. T., Haroutunian, V., Davis, K. L. and Meador-Woodruff, J. H. (2004) Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. Brain Res. Mol. Brain Res. 121, 60-69. https://doi.org/10.1016/j.molbrainres.2003.11.004
  144. Mueller, H. T. and Meador-Woodruff, J. H. (2004) NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr. Res. 71, 361-370. https://doi.org/10.1016/j.schres.2004.02.016
  145. Naassila, M., Hammoumi, S., Legrand, E., Durbin, P. and Daoust, M. (1998) Mechanism of action of acamprosate. Part I. Characterization of spermidine-sensitive acamprosate binding site in rat brain. Alcohol. Clin. Exp. Res. 22, 802-809. https://doi.org/10.1111/j.1530-0277.1998.tb03871.x
  146. Nagao, S., Kwak, S. and Kanazawa, I. (1997) EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience 78, 929-933. https://doi.org/10.1016/S0306-4522(97)00021-3
  147. Neuhauss, S. C., Rico, E. P. and Gesemann, M. (2010) Nomenclature of glutamate transporters in zebrafi sh and other vertebrates. Brain Res. Bull. 83, 297. https://doi.org/10.1016/j.brainresbull.2010.09.010
  148. Newell, K. A., Zavitsanou, K. and Huang, X. F. (2005) Ionotropic glutamate receptor binding in the posterior cingulate cortex in schizophrenia patients. Neuroreport 16, 1363-1367. https://doi.org/10.1097/01.wnr.0000174056.11403.71
  149. Ng, D., Pitcher, G. M., Szilard, R. K., Sertie, A., Kanisek, M., Clapcote, S. J., Lipina, T., Kalia, L. V., Joo, D., McKerlie, C., Cortez, M., Roder, J. C., Salter, M. W. and McInnes, R. R. (2009) Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PLoS Biol. 7, e41. https://doi.org/10.1371/journal.pbio.1000041
  150. Ni, Y., Malarkey, E. B. and Parpura, V. (2007) Vesicular release of glutamate mediates bidirectional signaling between astrocytes and neurons. J. Neurochem. 103, 1273-1284. https://doi.org/10.1111/j.1471-4159.2007.04864.x
  151. Nishikawa, T., Takashima, M. and Toru, M. (1983) Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci. Lett. 40, 245-250. https://doi.org/10.1016/0304-3940(83)90046-0
  152. Noebels, J. L., Qiao, X., Bronson, R. T., Spencer, C. and Davisson, M. T. (1990) Stargazer: a new neurological mutant on chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy. Res. 7, 129-135. https://doi.org/10.1016/0920-1211(90)90098-G
  153. Noga, J. T., Hyde, T. M., Herman, M. M., Spurney, C. F., Bigelow, L. B., Weinberger, D. R. and Kleinman, J. E. (1997) Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 27, 168-176. https://doi.org/10.1002/(SICI)1098-2396(199711)27:3<168::AID-SYN2>3.0.CO;2-B
  154. Noga, J. T. and Wang, H. (2002) Further postmortem autoradiographic studies of AMPA receptor binding in schizophrenia. Synapse 45, 250-258. https://doi.org/10.1002/syn.10106
  155. Noorbala, A. A., Akhondzadeh, S., Davari-Ashtiani, R. and Amini- Nooshabadi, H. (1999) Piracetam in the treatment of schizophrenia: implications for the glutamate hypothesis of schizophrenia. J. Clin. Pharm. Ther. 24, 369-374. https://doi.org/10.1046/j.1365-2710.1999.00238.x
  156. Ohnuma, T., Augood, S. J., Arai, H., McKenna, P. J. and Emson, P. C. (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res. Mol. Brain Res. 56, 207-217. https://doi.org/10.1016/S0169-328X(98)00063-1
  157. Ohtsuki, T., Toru, M. and Arinami, T. (2001) Mutation screening of the metabotropic glutamate receptor mGluR4 (GRM4) gene in patients with schizophrenia. Psychiatr. Genet. 11, 79-83. https://doi.org/10.1097/00041444-200106000-00004
  158. Olive, M. F. (2009) Metabotropic glutamate receptor ligands as potential therapeutics for addiction. Curr. Drug Abuse. Rev. 2, 83-98. https://doi.org/10.2174/1874473710902010083
  159. Paz, R. D., Tardito, S., Atzori, M. and Tseng, K. Y. (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur. Neuropsychopharmacol. 18, 773-786. https://doi.org/10.1016/j.euroneuro.2008.06.005
  160. Porter, R. H., Eastwood, S. L. and Harrison, P. J. (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res. 751, 217-231. https://doi.org/10.1016/S0006-8993(96)01404-7
  161. Prybylowski, K., Chang, K., Sans, N. and Kan, L., Vicini S., Wenthold R. J. (2005) The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 845-857. https://doi.org/10.1016/j.neuron.2005.08.016
  162. Ralevski, E., O'Brien, E., Jane, J. S., Dean, E., Dwan, R. and Petrakis, I. (2011) Effects of acamprosate on cognition in a treatment study of patients with schizophrenia spectrum disorders and comorbid alcohol dependence. J. Nerv. Ment. Dis. 199, 499-505. https://doi.org/10.1097/NMD.0b013e3182214297
  163. Rao, A. and Craig, A. M. (1997) Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801-812. https://doi.org/10.1016/S0896-6273(00)80962-9
  164. Ratnam, J. and Teichberg, V. I. (2005) Neurofi lament-light increases the cell surface expression of the N-methyl-D-aspartate receptor and prevents its ubiquitination. J. Neurochem. 92, 878-885. https://doi.org/10.1111/j.1471-4159.2004.02936.x
  165. Richardson-Burns, S. M., Haroutunian, V., Davis, K. L., Watson, S. J. and Meador-Woodruff, J. H. (2000) Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol. Psychiatry 47, 22-28. https://doi.org/10.1016/S0006-3223(99)00207-3
  166. Rico, E. P., de Oliveira, D. L., Rosemberg, D. B., Mussulini, B. H., Bonan, C. D., Dias, R. D., Wofchuk, S., Souza, D. O. and Bogo, M. R. (2010) Expression and functional analysis of Na(+)-dependent glutamate transporters from zebrafi sh brain. Brain Res. Bull. 81, 517-523. https://doi.org/10.1016/j.brainresbull.2009.11.011
  167. Rosse, R. B., Schwartz, B. L., Davis, R. E. and Deutsch, S. I. (1991) An NMDA intervention strategy in schizophrenia with "low-dose" milacemide. Clin. Neuropharmacol. 14, 268-272. https://doi.org/10.1097/00002826-199106000-00012
  168. Rosse, R. B., Schwartz, B. L., Leighton, M. P., Davis, R. E. and Deutsch, S. I. (1990) An open-label trial of milacemide in schizophrenia: an NMDA intervention strategy. Clin. Neuropharmacol. 13, 348-354. https://doi.org/10.1097/00002826-199008000-00010
  169. Rothstein, J. D., Martin, L., Levey, A. I., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N. and Kuncl, R. W. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13, 713-725. https://doi.org/10.1016/0896-6273(94)90038-8
  170. Sala, C. and Sheng, M. (1999) The fyn art of N-methyl-D-aspartate receptor phosphorylation. Proc. Natl. Acad. Sci. USA 96, 335-337. https://doi.org/10.1073/pnas.96.2.335
  171. Sans, N., Prybylowski, K., Petralia, R. S., Chang, K., Wang, Y. X., Racca, C., Vicini, S. and Wenthold, R. J. (2003) NMDA receptor traffi cking through an interaction between PDZ proteins and the exocyst complex. Nat. Cell Biol. 5, 520-530. https://doi.org/10.1038/ncb990
  172. Sans, N., Wang, P. Y., Du, Q., Petralia, R. S., Wang, Y. X., Nakka, S., Blumer, J. B., Macara, I. G. and Wenthold, R. J. (2005) mPins modulates PSD-95 and SAP102 traffi cking and infl uences NMDA receptor surface expression. Nat. Cell Biol. 7, 1179-1190. https://doi.org/10.1038/ncb1325
  173. Scarr, E., Beneyto, M., Meador-Woodruff, J. H. and Dean, B. (2005) Cortical glutamatergic markers in schizophrenia. Neuropsychopharmacology 30, 1521-1531. https://doi.org/10.1038/sj.npp.1300758
  174. Schiffer, H. H., Swanson, G. T. and Heinemann, S. F. (1997) Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19, 1141-1146. https://doi.org/10.1016/S0896-6273(00)80404-3
  175. Schmitt, A., Koschel, J., Zink, M., Bauer, M., Sommer, C., Frank, J., Treutlein, J., Schulze, T., Schneider-Axmann, T., Parlapani, E., Rietschel, M., Falkai, P. and Henn, F. A. (2010) Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 260, 101-111. https://doi.org/10.1007/s00406-009-0017-1
  176. Schoepp, D. D. (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther. 299, 12-20.
  177. Schwenk, J., Harmel, N., Zolles, G., Bildl, W., Kulik, A., Heimrich, B., Chisaka, O., Jonas, P., Schulte, U., Fakler, B. and Klocker, N. (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323, 1313-1319. https://doi.org/10.1126/science.1167852
  178. Sheng, M. and Pak, D. T. (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755-778. https://doi.org/10.1146/annurev.physiol.62.1.755
  179. Shi, S., Hayashi, Y., Esteban, J. A. and Malinow, R. (2001) Subunitspecifi c rules governing AMPA receptor traffi cking to synapses in hippocampal pyramidal neurons. Cell 105, 331-343. https://doi.org/10.1016/S0092-8674(01)00321-X
  180. Shibata, H., Tani, A., Chikuhara, T., Kikuta, R., Sakai, M., Ninomiya, H., Tashiro, N., Iwata, N., Ozaki, N. and Fukumaki, Y. (2009) Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Res. 167, 88-96. https://doi.org/10.1016/j.psychres.2007.12.002
  181. Singh, S. P. and Singh, V. Meta-Analysis of the Efficacy of Adjunctive NMDA Receptor Modulators in Chronic Schizophrenia. CNS Drugs 25, 859-885.
  182. Singh, S. P. and Singh, V. (2011) Meta-Analysis of the Efficacy of Adjunctive NMDA Receptor Modulators in Chronic Schizophrenia. CNS Drugs 25, 859-885. https://doi.org/10.2165/11586650-000000000-00000
  183. Sobolevsky, A. I., Rosconi, M. P. and Gouaux, E. (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745-756. https://doi.org/10.1038/nature08624
  184. Sodhi, M. S., Simmons, M., McCullumsmith, R., Haroutunian, V. and Meador-Woodruff, J. H. (2011) Glutamatergic gene expression is specifi cally reduced in thalamocortical projecting relay neurons in schizophrenia. Biol. Psychiatry 70, 646-654. https://doi.org/10.1016/j.biopsych.2011.02.022
  185. Sokolov, B. P. (1998) Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of "neuroleptic- free" schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J. Neurochem. 71, 2454-2464.
  186. Song, I., Kamboj, S., Xia, J., Dong, H., Liao, D. and Huganir, R. L. (1998) Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393-400. https://doi.org/10.1016/S0896-6273(00)80548-6
  187. Steiner, P., Alberi, S., Kulangara, K., Yersin, A., Sarria, J. C., Regulier, E., Kasas, S., Dietler, G., Muller, D., Catsicas, S. and Hirling, H. (2005) Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2. EMBO J 24, 2873-2884. https://doi.org/10.1038/sj.emboj.7600755
  188. Stephenson, F. A., Cousins, S. L. and Kenny, A. V. (2008) Assembly and forward traffi cking of NMDA receptors (Review). Mol. Membr. Biol. 25, 311-320. https://doi.org/10.1080/09687680801971367
  189. Straub, C., Hunt, D. L., Yamasaki, M., Kim, K. S., Watanabe, M., Castillo, P. E. and Tomita, S. (2011) Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nat. Neurosci. 14, 866-873. https://doi.org/10.1038/nn.2837
  190. Takaki, H., Kikuta, R., Shibata, H., Ninomiya, H., Tashiro, N. and Fukumaki, Y. (2004) Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 128B, 6-14. https://doi.org/10.1002/ajmg.b.20108
  191. Takamori, S., Rhee, J. S., Rosenmund, C. and Jahn, R. (2000) Identification of a vesicular glutamate transporter that defi nes a glutamatergic phenotype in neurons. Nature 407, 189-194. https://doi.org/10.1038/35025070
  192. Tamminga, C. (1999) Glutamatergic aspects of schizophrenia. Br. J. Psychiatry Suppl. 37, 12-15.
  193. Tang, M., Pelkey, K. A., Ng, D., Ivakine, E., McBain, C. J., Salter, M. W. and McInnes, R. R. (2011) Neto1 is an auxiliary subunit of native synaptic kainate receptors. J. Neurosci. 31, 10009-10018. https://doi.org/10.1523/JNEUROSCI.6617-10.2011
  194. Tek, C., Srihari, V. and Tek, E. (2008) Successful acamprosate treatment of alcohol dependence in schizophrenia. Schizophr. Res. 106, 373. https://doi.org/10.1016/j.schres.2008.08.010
  195. Thomas, C., Carroll, B. T., Maley, R. T., Jayanti, K. and Koduri, A. (2005) Memantine and catatonic schizophrenia. Am. J. Psychiatry 162, 626.
  196. Thomas, C. G., Miller, A. J. and Westbrook, G. L. (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J. Neurophysiol. 95, 1727-1734. https://doi.org/10.1152/jn.00771.2005
  197. Tiihonen, J., Halonen, P., Wahlbeck, K., Repo-Tiihonen, E., Hyvarinen, S., Eronen, M., Putkonen, H., Takala, P., Mehtonen, O. P., Puck, M., Oksanen, J., Koskelainen, P., Joffe, G., Aer, J., Hallikainen, T., Ryynanen, O. P. and Tupala, E. (2005) Topiramate add-on in treatment- resistant schizophrenia: a randomized, double-blind, placebo-controlled, crossover trial. J. Clin. Psychiatry 66, 1012-1015. https://doi.org/10.4088/JCP.v66n0808
  198. Tingley, W. G., Roche, K. W., Thompson, A. K. and Huganir, R. L. (1993) Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature 364, 70-73. https://doi.org/10.1038/364070a0
  199. Tingley, W. G., Ehlers, M. D., Kameyama, K,. Doherty, C., Ptak, J. B., Riley, C. T. and Huganir, R. L. (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-Daspartate receptor NR1 subunit using phosphorylation site-specificantibodies. J. Biol. Chem. 272, 5157-5166. https://doi.org/10.1074/jbc.272.8.5157
  200. Tomita, S. (2010) Regulation of ionotropic glutamate receptors by their auxiliary subunits. Physiology (Bethesda) 25, 41-49. https://doi.org/10.1152/physiol.00033.2009
  201. Toyooka, K., Iritani, S., Makifuchi, T., Shirakawa, O., Kitamura, N., Maeda, K., Nakamura, R., Niizato, K., Watanabe, M., Kakita, A., Takahashi, H., Someya, T. and Nawa, H. (2002) Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J. Neurochem. 83, 797-806. https://doi.org/10.1046/j.1471-4159.2002.01181.x
  202. Tsai, G., Lane, H. Y., Yang, P., Chong, M. Y. and Lange, N. (2004) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 55, 452-456. https://doi.org/10.1016/j.biopsych.2003.09.012
  203. Tsai, G. E., Yang, P., Chang, Y. C. and Chong, M. Y. (2006) D-alanine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 59, 230-234. https://doi.org/10.1016/j.biopsych.2005.06.032
  204. Tsai, G., Yang, P., Chung, L. C., Lange, N. and Coyle, J. T. (1998) D-serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 44, 1081-1089. https://doi.org/10.1016/S0006-3223(98)00279-0
  205. Volk, D. W., Eggan, S. M. and Lewis, D. A. (2010) Alterations in metabotropic glutamate receptor 1alpha and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am. J. Psychiatry 167, 1489-1498. https://doi.org/10.1176/appi.ajp.2010.10030318
  206. von Engelhardt, J., Mack, V., Sprengel, R., Kavenstock, N., Li, K. W., Stern-Bach, Y., Smit, A. B., Seeburg, P. H. and Monyer, H. (2010) CKAMP44: a brain-specifi c protein attenuating short-term synaptic plasticity in the dentate gyrus. Science 327, 1518-1522. https://doi.org/10.1126/science.1184178
  207. Vrajova, M., Stastny, F., Horacek, J., Lochman, J., Sery, O., Pekova, S., Klaschka, J. and Hoschl, C. (2010) Expression of the hippocampal NMDA receptor GluN1 subunit and its splicing isoforms in schizophrenia: postmortem study. Neurochem. Res. 35, 994-1002. https://doi.org/10.1007/s11064-010-0145-z
  208. Westphal, R. S., Tavalin, S. J., Lin, J. W., Alto, N. M., Fraser, I. D., Langeberg, L. K., Sheng, M. and Scott, J. D. (1999) Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93-96. https://doi.org/10.1126/science.285.5424.93
  209. Whiteheart, S. W. and Matveeva, E. A. (2004) Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor. J. Struct. Biol. 146, 32-43. https://doi.org/10.1016/j.jsb.2003.09.015
  210. Woo, T. U., Shrestha, K., Amstrong, C., Minns, M. M., Walsh, J. P. and Benes, F. M. (2007) Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Schizophr. Res. 96, 46-61. https://doi.org/10.1016/j.schres.2007.06.023
  211. Yu, B., Wang, C., Liu, J., Johnson, K. M. and Gallagher, J. P. (2002) Adaptation to chronic PCP results in hyperfunctional NMDA and hypofunctional GABA(A) synaptic receptors. Neuroscience 113, 1-10. https://doi.org/10.1016/S0306-4522(02)00163-X
  212. Zavitsanou, K., Ward, P. B. and Huang X. F. (2002) Selective alterations in ionotropic glutamate receptors in the anterior cingulate cortex in schizophrenia. Neuropsychopharmacology 27, 826-833. https://doi.org/10.1016/S0893-133X(02)00347-0
  213. Zhang, W., St-Gelais, F., Grabner, C. P., Trinidad, J. C., Sumioka, A., Morimoto-Tomita, M., Kim, K. S., Straub, C., Burlingame, A. L., Howe, J. R. and Tomita, S. (2009) A transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 61, 385-396. https://doi.org/10.1016/j.neuron.2008.12.014

Cited by

  1. Neue Ansätze in der Schizophrenietherapie vol.16, pp.1, 2015, https://doi.org/10.1007/s15202-015-0941-4
  2. The ameliorating effects of 5,7-dihydroxy-6-methoxy-2(4-phenoxyphenyl)-4H-chromene-4-one, an oroxylin A derivative, against memory impairment and sensorimotor gating deficit in mice vol.36, pp.7, 2013, https://doi.org/10.1007/s12272-013-0106-6
  3. What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit vol.19, pp.10, 2014, https://doi.org/10.1038/mp.2014.91
  4. Effects of Immune Activation during Early or Late Gestation on N-Methyl-d-Aspartate Receptor Measures in Adult Rat Offspring vol.8, 2017, https://doi.org/10.3389/fpsyt.2017.00077
  5. Altered Glutamate and Regional Cerebral Blood Flow Levels in Schizophrenia: A 1H-MRS and pCASL study vol.42, pp.2, 2017, https://doi.org/10.1038/npp.2016.172
  6. Dissolution and pharmacokinetic properties of two paliperidone cocrystals with 4-hydroxybenzoic and 4-aminobenzoic acid vol.16, pp.33, 2014, https://doi.org/10.1039/C4CE00784K
  7. Dendropanax morbifera Léveille extract ameliorates cadmium-induced impairment in memory and hippocampal neurogenesis in rats vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1435-z
  8. The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue vol.5, 2014, https://doi.org/10.3389/fpsyt.2014.00047
  9. Long-acting injectable formulations of antipsychotic drugs for the treatment of schizophrenia vol.36, pp.6, 2013, https://doi.org/10.1007/s12272-013-0105-7
  10. Upregulation of cornichon transcripts in the dorsolateral prefrontal cortex in schizophrenia vol.23, pp.17, 2012, https://doi.org/10.1097/WNR.0b013e32835ad229
  11. Kami-ondam-tang, a traditional herbal prescription, attenuates the prepulse inhibition deficits and cognitive impairments induced by MK-801 in mice vol.146, pp.2, 2013, https://doi.org/10.1016/j.jep.2013.01.032
  12. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies vol.1338, pp.1, 2015, https://doi.org/10.1111/nyas.12547
  13. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders vol.2016, 2016, https://doi.org/10.1155/2016/9847696
  14. StandardizedPrunella vulgarisvar.lilacinaExtract Enhances Cognitive Performance in Normal Naive Mice vol.29, pp.11, 2015, https://doi.org/10.1002/ptr.5449
  15. Correlation Between Levels of Delusional Beliefs and Perfusion of the Hippocampus and an Associated Network in a Non–Help-Seeking Population 2017, https://doi.org/10.1016/j.bpsc.2017.06.007
  16. Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications vol.233, pp.9, 2016, https://doi.org/10.1007/s00213-015-4156-y
  17. Oleanolic acid attenuates MK-801-induced schizophrenia-like behaviors in mice vol.86, 2014, https://doi.org/10.1016/j.neuropharm.2014.06.025
  18. Secundaire psychosen bij behandelbare neurologische aandoeningen vol.3, pp.1, 2015, https://doi.org/10.1007/s40533-015-0004-y
  19. Magnesium in schizophrenia vol.69, pp.5, 2017, https://doi.org/10.1016/j.pharep.2017.03.022
  20. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia vol.24, pp.12, 2013, https://doi.org/10.1097/WNR.0b013e328363bd8a
  21. Safety, Tolerability and Pharmacokinetics of Oral BI 425809, a Glycine Transporter 1 Inhibitor, in Healthy Male Volunteers: A Partially Randomised, Single-Blind, Placebo-Controlled, First-in-Human Study vol.43, pp.2, 2018, https://doi.org/10.1007/s13318-017-0440-z
  22. TCF4 and GRM8 gene polymorphisms and risk of schizophrenia in an Iranian population: a case-control study pp.1573-4978, 2018, https://doi.org/10.1007/s11033-018-4406-2
  23. Neurotoxic Agent-Induced Injury in Neurodegenerative Disease Model: Focus on Involvement of Glutamate Receptors vol.11, pp.1662-5099, 2018, https://doi.org/10.3389/fnmol.2018.00307
  24. Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators pp.1476-5578, 2020, https://doi.org/10.1038/s41380-018-0206-2
  25. The Effects of Acupuncture on Glutamatergic Neurotransmission in Depression, Anxiety, Schizophrenia, and Alzheimer's Disease: A Review of the Literature vol.10, pp.1664-0640, 2019, https://doi.org/10.3389/fpsyt.2019.00014
  26. Sex-specific up-regulation of lncRNAs in peripheral blood of patients with schizophrenia vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-49265-z
  27. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research vol.11, pp.None, 2012, https://doi.org/10.3389/fpsyt.2020.00703
  28. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia vol.45, pp.6, 2020, https://doi.org/10.1038/s41386-020-0614-2
  29. A single administration of ‘microbial’ D-alanine to healthy volunteers augments reaction to negative emotions: A comparison with D-serine vol.34, pp.5, 2012, https://doi.org/10.1177/0269881120908904
  30. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy vol.21, pp.20, 2012, https://doi.org/10.3390/ijms21207452
  31. Msp1/ATAD1 in Protein Quality Control and Regulation of Synaptic Activities vol.36, pp.None, 2012, https://doi.org/10.1146/annurev-cellbio-031220-015840
  32. Fifty Years of Research on Schizophrenia: The Ascendance of the Glutamatergic Synapse vol.177, pp.12, 2020, https://doi.org/10.1176/appi.ajp.2020.20101481
  33. Multi-targeted drug design strategies for the treatment of schizophrenia vol.16, pp.1, 2021, https://doi.org/10.1080/17460441.2020.1816962
  34. Expansion of the GRIA2 phenotypic representation: a novel de novo loss of function mutation in a case with childhood onset schizophrenia vol.66, pp.3, 2021, https://doi.org/10.1038/s10038-020-00846-1
  35. N-methyl-D-aspartate receptor availability in first-episode psychosis: a PET-MR brain imaging study vol.11, pp.1, 2012, https://doi.org/10.1038/s41398-021-01540-2
  36. AMPA induced cognitive impairment in rats: Establishing the role of endoplasmic reticulum stress inhibitor, 4‐PBA vol.99, pp.10, 2012, https://doi.org/10.1002/jnr.24859
  37. Ketamine for psychotic depression: An overview of the glutamatergic system and ketamine's mechanisms associated with antidepressant and psychotomimetic effects vol.306, pp.None, 2012, https://doi.org/10.1016/j.psychres.2021.114231