DOI QR코드

DOI QR Code

Blind Equalizer Algorithms using Random Symbols and Decision Feedback

랜덤 심볼열과 결정 궤환을 사용한 자력 등화 알고리듬

  • Kim, Nam-Yong (School of Electronics, Info. & Comm. Engineering, Kangwon National University)
  • 김남용 (강원대학교 전자정보통신공학부)
  • Received : 2011.11.02
  • Accepted : 2012.01.05
  • Published : 2012.01.31

Abstract

Non-linear equalization techniques using decision feedback structure are highly demanded for cancellation of intersymbol interferences occurred in severe channel environments. In this paper decision feedback structure is applied to the linear blind equalizer algorithm that is based on information theoretic learning and a randomly generated symbol set. At the decision feedback equalizer (DFE) the random symbols are generated to have the same probability density function (PDF) as that of the transmitted symbols. By minimizing difference between the PDF of blind DFE output and that of randomly generated symbols, the proposed DFE algorithm produces equalized output signal. From the simulation results, the proposed method has shown enhanced convergence and error performance compared to its linear counterpart.

결정 궤환 구조를 사용한 비선형 등화기법은 열악한 채널환경에서 발생하는 심각한 심볼간 간섭을 제거하는데 크게 요구되고 있다. 이 논문에서는 정보 이론적 학습방법과 랜덤 심볼에 기본을 두고 개발된 선형 자력 등화 알고리듬에 이 결정 궤환 구조를 적용한다. 제안된 결정 궤환 자력 등화기는 송신 심볼이 가지는 확률밀도함수와 동일한 모양을 갖도록 랜덤 심볼이 생성된다. 이 랜덤 심볼의 확률밀도함수와 등화기 출력이 가지는 확률밀도함수의 차이를 최소화함으로써 제안된 자력 등화 알고리듬은 등화된 출력 신호를 만들어낸다. 시뮬레이션 결과로부터 선형 알고리듬에 비해 향상된 수렴성능 및 오차 성능을 나타냈다.

Keywords

References

  1. L. Garth, "A dynamic convergence analysis of blind equalization algorithms," IEEE Trans. on Comm., Vol. 49, pp. 624-634, April, 2001. https://doi.org/10.1109/26.917769
  2. F. Mazzenga, "Channel estimation and equalization for M-QAM transmission with a hidden pilot sequence," IEEE Trans. on Broadcasting, Vol. 46, pp. 170-176, June, 2000. https://doi.org/10.1109/11.868934
  3. J. Principe, D. Xu and J. Fisher, Information Theoretic Learning, in: S. Haykin, Unsupervised Adaptive Filtering, Wiley, New York, Vol. I, pp. 265-319, 2000.
  4. D. Erdogmus, K. Hild, M. Lazaro, I. Santamaria, and J. Principe, "Aaptive Blind Deconvolution of Linear Channels Using Renyi's Entropy with Parzen Estimation," IEEE. Trans. on Signal Processing, Vol. 52, pp. 1489-1498, June, 2004. https://doi.org/10.1109/TSP.2004.827202
  5. N. Kim and L. Yang, "A New Criterion of Information Theoretic Optimization and Application to Blind Channel Equalization," Journal of Korean Society for Internet Information, Vol. 10, No. 1, pp. 11-17, Feb. 2009.
  6. E. Parzen, "On the estimation of a probability density function and the mode," Ann. Math. Stat. Vol.33, p. 1065, 1962. https://doi.org/10.1214/aoms/1177704472
  7. S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River, 4th edition, 2001.