DOI QR코드

DOI QR Code

Electronic Circuit Analysis of the Lorentz Chaotic System for Engineering Applications

공학적 응용을 위한 로렌츠 카오스 시스템의 전자회로 해석

  • Received : 2011.10.14
  • Accepted : 2012.01.05
  • Published : 2012.01.31

Abstract

In this paper, chaotic circuit of the Lorentz system for engineering applications was implemented using resistor, multipliers, capacitors and operational amplifiers. The implemented Lorentz chaotic system was analysed by PSPICE program. PSPICE simulation results show many kind of chaotic phenomena such time waveforms and phase plots. Meanwhile, according to resistor's variation, we got that Lorentz system show equilibrium state, periodic state and chaotic state.

본 논문에서는 공학적 응용을 위한 로렌츠 카오스 시스템을 연산증폭기, 곱셈기 등을 이용하여 전자회로로 설계하였다. 시간파형, 위상특성 등 여러 가지 카오스 동적특성 등을 PSPICE 모의실험을 통하여 파악하였다. 저항값의 변화를 통하여 카오스 특성을 얻기 위한 최적화 된 회로 파라미터를 구하였으며, 각 저항값의 변화에 따른 시간파형 특성 및 위상 특성을 구하였다.

Keywords

References

  1. T. S. Parker and L. O. Chua, "Chaos: A Tutorial for Enginees" Proc. IEEE vol. 75, no. 8, pp. 982-1008. 1987. https://doi.org/10.1109/PROC.1987.13845
  2. R. May, "Simple mathematical models with very complicated dynamics, Nature", vol. 261 pp. 459-476, 1976. https://doi.org/10.1038/261459a0
  3. Fransis C. Moon, Chaotic Vibrations : An Introduction for Applied Scientists and Engineers, John Wiley & SONS, 1992.
  4. R.Tokunaga,M.Komuro, T. Matsumoto, and L. O. Chua, "'Lorenz attractor' from an electrical circuit with uncoupled continuous piecewise linear resistor," Int. J. Circ. Theory Appl. 17(1), 71-85, 1989. https://doi.org/10.1002/cta.4490170108
  5. G. O. Zhong and F. Ayrom, "Experimental confirmation of chaos from Chua's circuit", Int. J. Circuit Theory and Applications, vol. 13, no. 1, pp. 93-98, 1985. https://doi.org/10.1002/cta.4490130109
  6. L. Kocarev, K. S. Halle, K. Eckert and L. O. Chua, "Expermental Demonstration of Secure Communication via Chaotic Synchronization" Int.J. Bifurcation and Chaos, vol. 2, no. 3, pp. 709-713, 1992. https://doi.org/10.1142/S0218127492000823
  7. Jonathan N. Blakely, Michael B. Eskridge, and Ned J. Corron, "High-frequency chaotic Lorenz circuit," Proc. IEEE SoutheastCon 2008, 69-74, 2008.
  8. K.M Cuomo and A.V.Oppenheim, "Synchronization of Lorenz-based chaotic circuits with applications to communications", IEEE Trans. Circuits Syst. II 40(10), 626-633, 1993. https://doi.org/10.1109/82.246163
  9. I. Pehlivan and Y. Uyaroglu, "Simplified chaotic diffusionless Lorentz attractor and its application to secure communication systems", IEEE Commun. Vol. 1, NO. 5. October 2007.
  10. Jonathan N. Blakely, Michael B. Eskridge, and Ned J. Corron. "A simple Lorenz circuit and its radio frequency implementation", Chaos 17(2), 023112, 2007. https://doi.org/10.1063/1.2723641