DOI QR코드

DOI QR Code

Densification and Microstructure of Ultrafine-sized AlN Powder Prepared by a High Energy Ball Milling Process

고에너지 볼밀링 방법에 의해 얻어진 초미립 AlN 분말의 치밀화 및 미세구조

  • Park, Hae-Ryong (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young-Do (Division of Materials Science and Engineering, Hanyang University) ;
  • Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 박해룡 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김영도 (한양대학교 신소재공학부) ;
  • 류성수 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2012.01.06
  • Accepted : 2012.02.03
  • Published : 2012.02.28

Abstract

In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% $Y_2O_3$ as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small $ZrO_2$ beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 $m^2/g$ was prepared after milling for 50 min. The milled powders were pressureless-sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. This powder showed excellent sinterability leading to full densification after sintering at $1700^{\circ}C$ for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the $ZrO_2$ impurity.

Keywords

References

  1. W. Werdecker and F. Aldinger: IEEE Trans. Comp., Hybrids, Manuf. Technol., CHMT-7 (1984) 399.
  2. Y. Kurokawa, Z. Utsumi, H. Takamizawa, T. Kamata and S. Noguchi: IEEE Trans. Comp., Hybrids, Manuf. Technol., CHMT-8 (1985) 247.
  3. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M Nakahashi and T. Takahashi: IEEE Trans. Comp., Hybrids, Manuf. Technol., 13 (1990) 313. https://doi.org/10.1109/33.56163
  4. T. B. Jackson, A. V. Virkar K. L. More, R. B. Dinwiddie, Jr and R. A. Cultler: J. Am. Ceram. Soc., 80 (1997) 1421- 35. https://doi.org/10.1111/j.1151-2916.1997.tb03000.x
  5. A. F. Belyanin, L. L. Bouilov, V. V. Zhirnov, A. I. Kamenev, K. A. Kovalskij and B. V. Spitsyn: Diam. Relat. Mater., 8 (1999) 369. https://doi.org/10.1016/S0925-9635(98)00412-9
  6. S. Kume, M. Yasuoka, N. Omura and K. Watari: J. Eur. Ceram. Soc., 26 (2006) 1831. https://doi.org/10.1016/j.jeurceramsoc.2005.09.009
  7. X. Du, M. Qin, Y. Sun, Z. Yuan, B. Yang and X. Qu: Adv. Powder Technol., 21 (2010) 431. https://doi.org/10.1016/j.apt.2010.01.001
  8. L. Yin, L. Yang, W. Yang, Y. Guo, K. Ma, S. Li and J. Zhang: Solid-State Electron., 52 (2010) 1520.
  9. L. Qiao, H. Zhou, H. Xue and S. Wang: J. Eur. Ceram. Soc., 23 (2003) 61-7. https://doi.org/10.1016/S0955-2219(02)00079-1
  10. J. Y. Qiu, Y. Hotta and K. Watari: J. Am. Ceram. Soc., 89 (2006) 377-80. https://doi.org/10.1111/j.1551-2916.2005.00692.x
  11. A. V. Virkar, T. B. Jackson and R. A. Cutler: J. Am. Ceram. Soc., 72 (1989) 2031. https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  12. T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwideie, and R. A. Cutier: J. Am. Ceram. Soc., 80 (1997) 1421. https://doi.org/10.1111/j.1151-2916.1997.tb03000.x
  13. J. Y. Qiu, Y. Hotta, K. Sato and K. Watari: J. Am. Ceram. Soc., 88 (2005) 1676. https://doi.org/10.1111/j.1551-2916.2005.00327.x
  14. N. Hashimoto, H. Yoden and S. Deki: J. Am. Ceram. Soc., 75 (1992) 2098. https://doi.org/10.1111/j.1151-2916.1992.tb04471.x
  15. M. L. Panchula and J. Y. Ying: J. Am. Ceram. Soc., 86 (2003) 1121. https://doi.org/10.1111/j.1151-2916.2003.tb03434.x
  16. R. Fu, H. Zhou, L. Chen and Y. Wu: Mater. Sci. Eng., A 266 (1999) 44. https://doi.org/10.1016/S0921-5093(99)00047-7
  17. I. Kimura, N. Hotta, H. Nukui, N Saito and S. Yasukawa: J. Mater. Sci. Letts., 7 (1988) 66. https://doi.org/10.1007/BF01729918
  18. H. R. Park, H. T. Kim, S. M. Lee, Y. D. Kim and S. S.Ryu: J. Kor. Ceram. Soc., 48 (2011) 418 (Korean). https://doi.org/10.4191/kcers.2011.48.5.418
  19. J. Y. Qiu, Y. Hotta, K. Sato and K. Watari: J. Am. Ceram. Soc., 88 (2005) 1676. https://doi.org/10.1111/j.1551-2916.2005.00327.x
  20. T. Sakai, et al: Yogyo-Kyokai-Shi, 86 (1978) 174. https://doi.org/10.2109/jcersj1950.86.992_174
  21. K. Komeya, H. Inoue and A. Tsuge: Yogyo-Kyokai-Shi, 89 (1981) 330. https://doi.org/10.2109/jcersj1950.89.1030_330
  22. R. M. German: Powder Metallurgy and Particlate Materials Procseeing, Metal Powder Industries Federation, New Jersey (2005) 72.
  23. T. Sakai and M. Iwata: J. Mater. Sci., 12 (1977) 1659. https://doi.org/10.1007/BF00542817
  24. W. J. Kim: Ph. D. Dissertation, Effect of Dopant Distribution on the Densification and Thermal Conductivity of Aluminum Nitride, Korea Advanced Institute of Science and Technology, Taejon (1994) 101.
  25. J. Y. Qiu, Y. Hotta, K. Watari, K. Mitsuishi and M. Yamazaki: J. Eur. Ceram. Soc., 26 (2006) 385. https://doi.org/10.1016/j.jeurceramsoc.2005.06.016
  26. S. J. L. Kang, K. H. Kim and D. N. Yoon: J. Am. Ceram. Soc., 74 (1991) 425. https://doi.org/10.1111/j.1151-2916.1991.tb06900.x