DOI QR코드

DOI QR Code

Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with synthetic cell binding peptide sequences

  • Choi, Hyunmin (Department of Prosthodontics, Yonsei University College of Dentistry) ;
  • Park, Nho-Jae (Department of Prosthodontics, Yonsei University College of Dentistry) ;
  • Jamiyandorj, Otgonbold (Department of Prosthodontics, Yonsei University College of Dentistry) ;
  • Hong, Min-Ho (Department of Dental Biomaterials and Bioengineering, Research Institute of Yonsei University College of Dentistry) ;
  • Oh, Seunghan (Department of Dental Biomaterials, Wonkwang University School of Dentistry) ;
  • Park, Young-Bum (Department of Prosthodontics, Yonsei University College of Dentistry) ;
  • Kim, Sungtae (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry)
  • Received : 2012.07.12
  • Accepted : 2012.08.03
  • Published : 2012.10.31

Abstract

Purpose: The aim of this study was to evaluate the improvement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with synthetic cell-binding peptide sequences in a standardized rabbit sinus model. Methods: Standardized 6-mm diameter defects were created bilaterally on the maxillary sinus of ten male New Zealand white rabbits, receiving BCP bone substitute coated with synthetic cell binding peptide sequences on one side (experimental group) and BCP bone substitute without coating (control group) on the other side. Histologic and histomorphometric analysis of bone formation was carried out after a healing period of 4 or 8 weeks. Results: Histological analysis revealed signs of new bone formation in both experimental groups (4- and 8-week healing groups) with a statistically significant increase in bone formation in the 4-week healing group compared to the control group. However, no statistically significant difference in bone formation was found between the 8-week healing group and the control group. Conclusions: This study found that BCP bone substitute coated with synthetic cell-binding peptide sequences enhanced osteoinductive potential in a standardized rabbit sinus model and its effectiveness was greater in the 4-week healing group than in the 8-week healing group.

Keywords

References

  1. Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev 2010;16:493-507. https://doi.org/10.1089/ten.teb.2010.0035
  2. Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. Sinus floor augmentation surgery using autologous bone grafts from various donor sites: a meta-analysis of the total bone volume. Tissue Eng Part B Rev 2010;16:295-303. https://doi.org/10.1089/ten.teb.2009.0558
  3. Schlegel KA, Schultze-Mosgau S, Wiltfang J, Neukam FW, Rupprecht S, Thorwarth M. Changes of mineralization of free autogenous bone grafts used for sinus floor elevation. Clin Oral Implants Res 2006;17:673-8. https://doi.org/10.1111/j.1600-0501.2006.01186.x
  4. Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with $Straumann^{(R)}$ BoneCeramic, $Bio-Oss^{(R)}$, $Puros^{(R)}$, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res 2012 Feb 13 [Epub]. http://dx.doi.org/10.1111/j.1600-0501.2012.02431.x.
  5. Frenken JW, Bouwman WF, Bravenboer N, Zijderveld SA, Schulten EA, ten Bruggenkate CM. The use of Straumann Bone Ceramic in a maxillary sinus floor elevation procedure: a clinical, radiological, histological and histomorphometric evaluation with a 6-month healing period. Clin Oral Implants Res 2010;21:201-8. https://doi.org/10.1111/j.1600-0501.2009.01821.x
  6. Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res 2008;19:796-803. https://doi.org/10.1111/j.1600-0501.2008.01565.x
  7. Kim S, Jung UW, Lee YK, Choi SH. Effects of biphasic calcium phosphate bone substitute on circumferential bone defects around dental implants in dogs. Int J Oral Maxillofac Implants 2011;26:265-73.
  8. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14:195-200.
  9. Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, et al. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:298-306. https://doi.org/10.1016/j.tripleo.2010.10.025
  10. Park JC, So SS, Jung IH, Yun JH, Choi SH, Cho KS, et al. Induction of bone formation by Escherichia coli-expressed recombinant human bone morphogenetic protein-2 using block-type macroporous biphasic calcium phosphate in orthotopic and ectopic rat models. J Periodontal Res 2011;46:682-90. https://doi.org/10.1111/j.1600-0765.2011.01390.x
  11. Wong DA, Kumar A, Jatana S, Ghiselli G, Wong K. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J 2008;8:1011-8. https://doi.org/10.1016/j.spinee.2007.06.014
  12. Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, et al. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 2000;27:479-86. https://doi.org/10.1016/S8756-3282(00)00358-6
  13. Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine (Phila Pa 1976) 2006;31:2813-9. https://doi.org/10.1097/01.brs.0000245863.52371.c2
  14. Park JB, Lee JY, Park HN, Seol YJ, Park YJ, Rhee SH, et al. Osteopromotion with synthetic oligopeptide-coated bovine bone mineral in vivo. J Periodontol 2007;78:157-63. https://doi.org/10.1902/jop.2007.060200
  15. Nam HW, Park JB, Lee JY, Rhee SH, Lee SC, Koo KT, et al. Enhanced ridge preservation by bone mineral bound with collagen-binding synthetic oligopeptide: a clinical and histologic study in humans. J Periodontol 2011;82:471-80. https://doi.org/10.1902/jop.2010.100193
  16. Kim TI, Jang JH, Lee YM, Rhyu IC, Chung CP, Han SB, et al. Biomimetic approach on human periodontal ligament cells using synthetic oligopeptides. J Periodontol 2004;75: 925-32. https://doi.org/10.1902/jop.2004.75.7.925
  17. Hagel-Bradway S, Dziak R. Regulation of bone cell metabolism. J Oral Pathol Med 1989;18:344-51. https://doi.org/10.1111/j.1600-0714.1989.tb01564.x
  18. Seyedin SM. Osteoinduction: a report on the discovery and research of unique protein growth factors mediating bone development. Oral Surg Oral Med Oral Pathol 1989; 68(4 Pt 2):527-9. https://doi.org/10.1016/0030-4220(89)90232-6
  19. Hole BB, Schwarz JA, Gilbert JL, Atkinson BL. A study of biologically active peptide sequences (P-15) on the surface of an ABM scaffold (PepGen P-15) using AFM and FTIR. J Biomed Mater Res A 2005;74:712-21.
  20. Qian JJ, Bhatnagar RS. Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen. J Biomed Mater Res 1996;31:545-54. https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<545::AID-JBM15>3.0.CO;2-F
  21. Hanks T, Atkinson BL. Comparison of cell viability on anorganic bone matrix with or without P-15 cell binding peptide. Biomaterials 2004;25:4831-6. https://doi.org/10.1016/j.biomaterials.2003.12.007
  22. Yukna RA, Callan DP, Krauser JT, Evans GH, Aichelmann-Reidy ME, Moore K, et al. Multi-center clinical evaluation of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) as a bone replacement graft material in human periodontal osseous defects. 6-month results. J Periodontol 1998;69:655-63. https://doi.org/10.1902/jop.1998.69.6.655
  23. Ijiri S, Yamamuro T, Nakamura T, Kotani S, Notoya K. Effect of sterilization on bone morphogenetic protein. J Orthop Res 1994;12:628-36. https://doi.org/10.1002/jor.1100120505
  24. Asai S, Shimizu Y, Ooya K. Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res 2002;13:405-9. https://doi.org/10.1034/j.1600-0501.2002.130409.x
  25. Seol YJ, Park YJ, Lee SC, Kim KH, Lee JY, Kim TI, et al. Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A 2006;77: 599-607.
  26. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233-41. https://doi.org/10.1080/08977190412331279890
  27. Hwang CJ, Vaccaro AR, Lawrence JP, Hong J, Schellekens H, Alaoui-Ismaili MH, et al. Immunogenicity of bone morphogenetic proteins. J Neurosurg Spine 2009;10:443-51. https://doi.org/10.3171/2009.1.SPINE08473
  28. Shimer AL, Oner FC, Vaccaro AR. Spinal reconstruction and bone morphogenetic proteins: open questions. Injury 2009;40 Suppl 3:S32-8. https://doi.org/10.1016/S0020-1383(09)70009-9
  29. Saito A, Suzuki Y, Kitamura M, Ogata S, Yoshihara Y, Masuda S, et al. Repair of 20-mm long rabbit radial bone defects using BMP-derived peptide combined with an alpha-tricalcium phosphate scaffold. J Biomed Mater Res A 2006; 77:700-6.
  30. Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 2000;50:405-9. https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<405::AID-JBM15>3.0.CO;2-Z
  31. Lee CK, Koo KT, Park YJ, Lee JY, Rhee SH, Ku Y, et al. Biomimetic surface modification using synthetic oligopeptides for enhanced guided bone regeneration in beagles. J Periodontol 2012;83:101-10. https://doi.org/10.1902/jop.2011.110040
  32. De Souza Nunes LS, De Oliveira RV, Holgado LA, Nary Filho H, Ribeiro DA, Matsumoto MA. Immunoexpression of Cbfa-1/Runx2 and VEGF in sinus lift procedures using bone substitutes in rabbits. Clin Oral Implants Res 2010; 21:584-90. https://doi.org/10.1111/j.1600-0501.2009.01858.x
  33. Roberts EG, Breznak N. Bone Physiology and Metabolism. In; Mish CE, editor. Contemporary implant dentistry. Orlando: Mosby Year Book; 1994. p.557-98.
  34. Bhatnagar RS, Qian JJ, Gough CA. The role in cell binding of a beta-bend within the triple helical region in collagen alpha 1 (I) chain: structural and biological evidence for conformational tautomerism on fiber surface. J Biomol Struct Dyn 1997;14:547-60. https://doi.org/10.1080/07391102.1997.10508155
  35. Valentin AH, Weber J. Receptor technology--cell binding to P-15: a new method of regenerating bone quickly and safely-preliminary histomorphometrical and mechanical results in sinus floor augmentations. Keio J Med 2004;53: 166-71. https://doi.org/10.2302/kjm.53.166
  36. Bhatnagar RS, QiannJJ, Wedychowska A, Dixon E, Smith N. Biomimetic habitats for cells: ordered matrix deposition and differentiation in gingival fibroblasts cultured on hydroxyapatitie coated with a collagen analogue. Cell Mater 1999;9:93-104.

Cited by

  1. Comparative analysis of carrier systems for delivering bone morphogenetic proteins vol.45, pp.4, 2015, https://doi.org/10.5051/jpis.2015.45.4.136
  2. Four-week histologic evaluation of grafted calvarial defects with adjunctive hyperbaric oxygen therapy in rats vol.46, pp.4, 2016, https://doi.org/10.5051/jpis.2016.46.4.244
  3. Adjunctive hyperbaric oxygen therapy for irradiated rat calvarial defects vol.49, pp.1, 2012, https://doi.org/10.5051/jpis.2019.49.1.2
  4. Improvement of the osteogenic potential of ErhBMP-2-/EGCG-coated biphasic calcium phosphate bone substitute: in vitro and in vivo activity vol.49, pp.2, 2012, https://doi.org/10.5051/jpis.2019.49.2.114
  5. Bone Regeneration Effect of Hyperbaric Oxygen Therapy Duration on Calvarial Defects in Irradiated Rats vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/9051713
  6. Amorphous Calcium Phosphate NPs Mediate the Macrophage Response and Modulate BMSC Osteogenesis vol.44, pp.1, 2012, https://doi.org/10.1007/s10753-020-01331-9