DOI QR코드

DOI QR Code

Phylogenetic Relationships of the Korean Trigonotis Steven (Boraginaceae) Based on Chloroplast DNA (cpDNA) and Nuclear Ribosomal Markers (nrDNA) Region

  • Received : 2012.11.27
  • Accepted : 2012.12.17
  • Published : 2012.12.31

Abstract

We performed phylogenetic analyses of a total of 21 acessions covering 5 species in the Korean Trigonotis and one outgroup species using nuclear ribosomal ITS and chloroplast rbcL, matK, ndhF sequences. Outgroup were chosen from the closely related genus Lithospermum zollingeri. Both parsimony and Bayesian Inference methods were used to reconstruct the evolutionary history of the group. The evidence collected indicated that phylogenetic relationships among Korean Trigonotis species are unresolved based on nuclear marker (ITS), as the same as based on separated chloroplast sequences. While the phylogenetic relationships of Korean Trigonotis species almost clearly were resolved in combined chloroplast sequences. Thus, the members of Trigonotis coreana can be distinguished to the members of Trigonotis peduncularis in combined cpDNA sequences and Trigonotis nakaii was treated as a synonymed to Trigonotis radicans var. sericea. In addition, the MP and BI analysis showed Trigonotis icumae as sister of the remained Korean Trigonotis species based on combined molecular markers (BI: PP = 1).

Keywords

References

  1. Azuma, T., T. Kajita, J. Yokoyama and H. Ohashi. 2000. Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Amer. J. Bot. 87:67-75. https://doi.org/10.2307/2656686
  2. Baldwin, B.G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Composite. Mol. Phylogenet. Evol. 1:3-16. https://doi.org/10.1016/1055-7903(92)90030-K
  3. Bailey, C.D., T.G. Carr, S.A. Harris and C.E. Hughes. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and psedogenes. Mol. Phylogenet. Evol. 29:435- 455. https://doi.org/10.1016/j.ympev.2003.08.021
  4. Chase, M.W, R.S. Cowan, P.M. Hollingsworth, G. Petersen, O. Seberg, T. Jorgsensen, K.M. Cameron and M. Carine. 2007. A proposal for a standardized protocol to barcode all land plants. Taxon 56:295-299.
  5. Cunningham, C.W. 1997. Can three incongruence tests predict when data should be combined?. Mol. Biol. Evol. 14(7): 733-740. https://doi.org/10.1093/oxfordjournals.molbev.a025813
  6. De Candolle, A.P. 1846. Trigonotis. In Prodromus systematis naturalis regni vegetabilis X. Parisiis.
  7. Doyle, J. and J. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.
  8. Feline, G.N. and J.A. Rosello. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species- level evolutionary studies in plants. Mol. Phylogenet. Evol. 44:911-919. https://doi.org/10.1016/j.ympev.2007.01.013
  9. Hilu, K.W, T. Borsch, K. Muller, D.E. Soltis, P.S. Soltis, V. Savolainen, M.W. Chase, M.P. Powell, L.A. Alice and R. Evans. 2003. Angiosperm phylogeny based on matK sequence information. Amer. J. Bot. 90:1758-1776. https://doi.org/10.3732/ajb.90.12.1758
  10. Hipp, A.L., J.C. Hall and K.J. Sytsma. 2004. Congruence versus phylogenetic accuracy: revisiting the incingruence length difference test. Syst. Biol. 53(1):81-89. https://doi.org/10.1080/10635150490264752
  11. Huelsenbeck, J.P., D.M. Hills and R. Jones. 1996. Parametric bootstrapping in molecular phylogenies: application and performance. Molecular zoology: advances, strategies, and protocols. 19-45. Wiley, New York, USA.
  12. Jovanovic', V. and D. Cvetkovic'. 2010. Implications of rbcL phylogeny for historical biogeography of genus Mercurialis L.: Estimating age and center of origin. Arch. Biol. Sci. 62:603-609. https://doi.org/10.2298/ABS1003603J
  13. Johnston, I.M. 1937. Studies in the Boraginaceae, XII. J. Arnold Arboretum 18:10-25.
  14. Kress, W..J. and D.L. Erickson. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One pp. e508.
  15. Lahaye, R., M. Van der Bank, D. Bogarin, J. Warner, F. Pupulin, G. Gigot, O. Maurin, S. Duthoit, T.G. Barraclough and V. Savolainen. 2008. DNA barcoding the floras of biodiversity hotspots. PNAS. 105:2923-2928. https://doi.org/10.1073/pnas.0709936105
  16. Les, D.H. 1994. Molecular systematics and taxonomy of lake cress (Neobeckia aquatica Brassicaceae), an imperiled aquatic mustard. Aquatic Botany 49:149 - 165. https://doi.org/10.1016/0304-3770(94)90035-3
  17. Lee, W.T. 1996. Standard illustrations of Korean Plants. Academy Press, Seoul, Korea. pp. 929-930 (in Korean).
  18. Maddison, D.R. and W.P. Maddison. 2005. MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.08. Sinauer Associates, Sunderland, Massachusetts.
  19. Mason-Gamer, R.J and E.A. Kellogg. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45(4):524-545. https://doi.org/10.1093/sysbio/45.4.524
  20. Maximowicz, C.J. 1872. Courtes diagnoses des nouvelles plantes du Japon et de la Mandijourie. Bulletin de I'Academic Imperiale des Sciences St. Petersbourg. 17:417-456.
  21. Mayol, M. and J.A. Rosselo'. 2001. Why nuclear ribosomal DNA spacer (ITS) tell different stories in Quercus. Mol. Phylogenet. Evol. 19:167-176. https://doi.org/10.1006/mpev.2001.0934
  22. Muller, K.F, T. Borsch and K.W. Hilu. 2006. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. Mol. Phylogenet. Evol. 41:99-117. https://doi.org/10.1016/j.ympev.2006.06.017
  23. Nakai, T. 1917. Trigonotis Japono-Coreanae. Botanical Magazine Tokyo 31:215-218. https://doi.org/10.15281/jplantres1887.31.368_en215
  24. Newmaster, S.G., A.J. Fazekas and S. Ragupathy. 2006. DNA barcoding in the land plants: evaluation of rbcL in a multigene tired approach. Can. J. Bot. 84:335-341. https://doi.org/10.1139/b06-047
  25. Ohwi, J. 1953. Flora of Japan. Smithsonian Inst., Washington. USA.
  26. Olmstead, R.G. and J.A. Sweere. 1994. Combining data in phylogenetic systematic: an empirical approach using three molecular data sets in the Solanaceae. Syst. Biol. 43:467-481. https://doi.org/10.1093/sysbio/43.4.467
  27. Olmstead, R.G., P.A. Reeves and A.C. Yen. 1998. Patterns of sequence evolution and implications for parsimony analysis of chloroplast DNA. Kluwer, Boston, Massachusetts, USA. pp. 164-187.
  28. Popov, M.G. 1953. Boraginaceae in B.K. Shischkin Flora of the U.S.S.R.. Moskva and Leninggrad. 19:97- 691.
  29. Ronquist, F., Huelsenbeck. 2003. MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  30. Rokas, A., B.L. Williams, N. King and S.B. Carroll. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798-840. https://doi.org/10.1038/nature02053
  31. Sang, T., D.J. Crawford and T.F. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Amer. J. Bot. 84:1120-1136. https://doi.org/10.2307/2446155
  32. Savolainen, V., M.W. Chase, S.B. Hoot, C.M. Morton, D.E. Soltis, C. Bayer, M.F. Fay, A.Y. De Bruijn, S. Sullivan and Y.L. Qiu. 2000a. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 49:306-362. https://doi.org/10.1093/sysbio/49.2.306
  33. Simmons, M.P. and H. Ochoterena. 2000. Gaps as characters in sequence based analyses. Syst. Biol. 49:369-381. https://doi.org/10.1093/sysbio/49.2.369
  34. Small, R.L., R.C. Cronn and J.F. Wendel. 2004. Use of the nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 17:145-170. https://doi.org/10.1071/SB03015
  35. Soltis, D.E., E.V. Mavrodiev, J.J. Doyle, J. Rausher and P.S. Soltis. 2008. ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrid. Syst. Biol. 33:7-20.
  36. Swofford, D.L 2002. PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA.
  37. Swofford, D.L. 2003. PAUP*: Phylogenetic analysis using parsimony Version 4.0b10 for 32-bit Microsoft Windows. Sinauer, Sunderland.
  38. Sweeney, P.W. and R.A. Price. 2000. Polyphyly of the genus Dentaria (Brassicaceae): evidence from trnL intron and ndhF sequence data. Syst. Bot. 25(3):468-478. https://doi.org/10.2307/2666690
  39. Xiang, Q.Y., D.E. Soltis, D.R. Morgan, and P.S. Soltis. 1993. Phylogenetic relationships of Cornus L. sensu lato and putative relatives inferred from rbcL sequence data. Ann. Mo. Bot. Gard. 80:723-734. https://doi.org/10.2307/2399856
  40. Wang, C.J. 1982. Taxanomic and phytogeographic studies on Chinese species Trigonotis Steven. Acta. Bot. Yunnanica 4:31-45.
  41. White, T.J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. A guide to methods and applications, UK edition. Academic Press, San Diego, USA. pp. 315-322.
  42. Wolfe, K.H. 1991. Protein-coding genes in chloroplast DNA: compilation of nucleotide sequences, data base entries, and rates of molecular evolution. In Bogorad, L. and I.K. Vasil (eds.), Cell Culture and Somatic Cell Genetics of Plants. Academic Press, San Diego, USA. 7:467-482.
  43. Zhu, G.L., H. Riedl, and R. Kametin. 1995. Trigonotis. In Wu, Z.Y. and P.H. Raven (eds.). Flora of China. Science Press, Beijing, China and Missouri Botanical Garden, St. Louis, USA. 16:361-373.

Cited by

  1. A phylogenetic analysis of morphological and molecular characters of Boraginaceae: evolutionary relationships, taxonomy, and patterns of character evolution vol.30, pp.2, 2014, https://doi.org/10.1111/cla.12036