References
- 구글, 2012, http://maps.google.co.kr
- 다음, 2012, http://local.daum.net
- 가칠오, 이정호, 양성철, 유기윤 (2012), SLI(Street-level Imagery)와 2D 지도간의 합성을 위한 위치 편차 제거, 한국지형공간정보학회지, 한국지형공간정보학회, 제20권, 제2호, pp. 63-71. https://doi.org/10.7319/kogsis.2012.20.2.063
- Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A. S., Vincent, L., and Weaver, J. (2010), Google Street View: Capturing the World at Street Level, IEEE Computer, IEEE, Vol. 43, No. 6, pp. 32-38. https://doi.org/10.1109/MC.2010.170
- Canny, J. (1986), A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, Vol. 8, pp. 679-698. https://doi.org/10.1109/TPAMI.1986.4767851
- Chen, C. C., Knoblock, C. A., and Shahabi, C. (2006), Automatically Conflating Road Vector Data with Orthoimagery, GeoInformatica, Vol. 10, No. 4, pp. 495- 530. https://doi.org/10.1007/s10707-006-0344-6
- Cobb, M. A., Chung, M. J., Foley III, H., Petry, F. E., and Shaw, K. B. (1998), A Rule-based Approach for the Conflation of Attributed Vector Data, GeoInformatica, Kluwer Academic Publishers, Vol. 2, No. 1, pp. 7-35. https://doi.org/10.1023/A:1009788905049
- Comanicu, D. and Meer, P. (2002) Mean shift: A robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Machine Intell., IEEE, Vol. 24, pp. 603-619. https://doi.org/10.1109/34.1000236
- Davis, L. S. and Benedikt, M. L. (1979), Computational Models of Space: Isovists and Isovist field", Computer Graphics and Image Processing, Elsevier Inc., Vol. 11, No. 1, pp. 49-72. https://doi.org/10.1016/0146-664X(79)90076-5
- Duda, R. O. and Hart, P. E. (1972), Use of the Hough Transformation to Detect Lines and Curves in Pictures, Comm. ACM, ACM, Vol. 15, pp. 11-15. https://doi.org/10.1145/361237.361242
- Jung, J., Lee, S., Cho, M., and Kim, J. (2011), Touch TT: Scene Text Extractor Using Touchscreen Interface, ETRI Journal, ETRI, Vol. 33, No. 1, pp. 78-88. https://doi.org/10.4218/etrij.11.1510.0029
- Laungrungthip, N. McKinnon, A. E., Churcher, C. D., Unsworth, K., Edge-based detection of sky regions in images for solar exposure prediction, IEEE, IVCNZ 2008. 23rd International Conference, IEEE.
- Li, Q., Lu, W, Yang, J., and James, Z. (2012), Thin Cloud Detection of All-Sky Images Using Markov Random Fields, IEEE Geoscience and Remote Sensing Letters, IEEE, Vol. 9, No. 3, pp. 417-421. https://doi.org/10.1109/LGRS.2011.2170953
- Lillesand and Kiefer, 2008, Remote Sensing and Image Interpretation, Jhon Wiley & Sons Inc., pp. 9-10.
- Neto, S. L. M., Wangenheim, A. V., Pereira, E. B., and Comunello, E. (2010), The use of Euclidean geometric distance on RGB color space for the classification of sky and cloud patterns, Journal of Atmospheric and Oceanic Technology, AMS, Vol. 27, No. 9, pp. 1504-1517. https://doi.org/10.1175/2010JTECHA1353.1
- Samal, A., Seth, S. and Cueto, K. (2004), A Feature-based Approach to Conflation of Geospatial Sources, International Journal of Geographical Information Science, Taylor & Francis, Vol. 18, No. 5, pp. 459-489. https://doi.org/10.1080/13658810410001658076
- Song, W., James M. Keller, Timothy L. Haithcoat, and Curt H. Davis (2011), Relaxation-Based Point Feature Matching for Vector Map Conflation, Transactions in GIS, Wiley, Vol. 15, No. 1, pp. 43-60. https://doi.org/10.1111/j.1467-9671.2010.01243.x
- Yuan S. and Tao C. V. (1999), Development of Conflation Components, Proceedings of Geoinformatics '99 Cconference on Geoinformatics and Socioinformatics, The Association of Chinese Professionals in GIS, Ann Arbor, Michigan, USA, June 19-21, 1999, pp. 579-591.