DOI QR코드

DOI QR Code

파종기 차이에 따른 등숙기간 중 검정콩의 아이소플라본 함량 변화

Changes of Isoflavone Contents During Maturation under Different Planting Dates in Black Soybean

  • Yi, Eun-Seob (Gyounggido Agricultural Research and Extension Services) ;
  • Yoon, Seong-Tak (College of Bio-Resources Science, Dankook University)
  • 투고 : 2012.07.02
  • 심사 : 2012.11.23
  • 발행 : 2012.12.31

초록

본 연구는 콩에 함유된 아이소플라본 합성에 관여하는 요인 중 평균기온이 미치는 영향을 구명하고자 수행하였다. 시험품종은 생태형이 다른 일품검정콩, 청자콩, 흑청콩 3품종을 사용하였다. 파종은 5월 15일, 5월 30일 6월 15일 3시기에 재식밀도 $60{\times}15cm$로 하였다. 재배관리는 경기도 콩 표준재배법에 준하여 하였다. 아이소플라본 함량 분석은 개화기후 30일부터 5일 간격으로 수확기까지 채취하여 얻은 시료를 UPLC로 분석하여 얻은 결과는 다음과 같다. 1. 아이소플라본 함량은 시험품종 모두 파종기가 늦을수록 높았다. 2. 아이소플라본 함량은 품종과 파종기에 관계없이 genistein이 가장 높았고, 다음은 daidzein, glycitein 순이었는데, glycitein은 개화기 후 45~55일경 이후에는 뚜렷한 증가를 보이지 않았고, 등숙기간중 기온변화에 안정적이었다. 3. 아이소플라본 중 genistein 함량이 daidzein 함량보다 높아진 시기는 일품검정콩은 개화기 후 50~55일, 청자콩은 개화기 후 40~55일, 흑청콩은 개화기 후 60~65일이었다. 4. 등숙기간중 개화기 후 30일부터 5일 간격으로 평균기온과 아이소플라본 함량과의 관계를 분석한 결과, 일품검정콩에서 genistein은 y=-15.28x+407.9 ($R^2=0.505^*$), 청자콩에서 diadzein은 y=-6.188x-164.5($R^2=0.454^*$)로 유의한 상관관계를, genistein은 y=-11.59x+297.6($R^2=0.545^{**}$)으로 고도의 유의한 상과관계를 보였다. 5. 아이소플라본 함량이 높은 검정콩 생산이 적합한 지역은 등숙기간중 립비대기($R_5$)~생리적 성숙기($R_7$)의 평균기온이 상대적으로 낮은 경기북부지역과 강원도, 충청북도, 경상북도의 내륙지역과 고지대일 것으로 고찰되었다.

This study was carried out to investigate the influence of different planting time on the synthesis of isoflavone in black soybean, Three varieties used in this experiment were lpumgeomjeongkong, Cheongjakong and Heugcheongkong which had different ecotypes, repectively. Seeds were sown at different time, May 15th, May 30th and June 15th with planting density of $60{\times}15cm$. In order to analyze the content of isoflavone, we collected sample every 5 days from 30 days after flowering to harvest and analyzed them with UPLC. As sowing was delayed, the content of isoflavone increased in all of three varieties. The content of genistein was greater than daidzein and glycitein. Increase of Glycitein was not distinct from 55 days after flowering(DAF) and it was stable against temperature change during the seed developing period. Although the content of genistein in Ilpumgeomjeongkong from 50 to 55 DAF, in Cheongjakong from 40 to 55 DAF and in Heugcheongkong from 60 to 65 DAF was lower than the content of daidzein, it was higher than that of daidzein afterward. In the statistical analysis on the relationship between average temperature and the content of aglycone isoflavone at 5-day intervals from 30 DAF during the grain filling period, genistein in Ilpumgeomjeongkong showed meaningful correlation as y=-15.28x+407.9 ($R^2=0.505^*$), diadzein in Cheongjakong showed meaningful correlation as y=-6.188x-164.5($R^2=0.454^*$), and genistein showed significantly high correlation as y=-11.59x+297.6 ($R^2=0.545^{**}$). Taking all the above results into consideration, it was suggested that the regions suitable for high content of isoflavone in black soybean be the northern area of Gyeonggi-do and Gangwon-do, Chungcheongbuk-do and inland area of Gyeongsangbuk-do, where are relatively low average temperature from flowering stage($R_2$) during the grain filling period.

키워드

참고문헌

  1. Akagi, I., M. S. Nishihara, Y. Ueda, A. Akitoshi, Yokoyama, Y. Asano, and Y. Saeki. 2007. Isoflavone content of soybean cultovars for warm districts grown in Miyazaki prefecture. Jpn J. Crop Sci. 76(3) : 454-458. https://doi.org/10.1626/jcs.76.454
  2. Akiyama, T., S. Ishida, H. Nakagawa, S. I. Ogawara, N. Watanabe, M. Itoh, M. Shibuya, and Y. Fukami. 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262 : 5592-5595.
  3. Barnes. S. 1995. Evalution of the biochemical targets of genistein in tumor cells. J. Nutr., 125(3Suppl) : 784-789.
  4. Berger, M., C. A. Rasolohery, R. Cazalis, and J. Dayde. 2008. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls : distinct pathways and genetic controls. Crop Sci 48 : 700-708. https://doi.org/10.2135/cropsci2007.08.0431
  5. Eldridge. A. C. and W. F. Kwolek. 1983. Soybean Isoflavones : Effect of environment and variety on composition. J. Agric. Food Chem. 31 : 394-396. https://doi.org/10.1021/jf00116a052
  6. Kim, S. R., H. D. Hong, and S. S. Kim. 1999. Some properties and Contents of Isoflavone in Soybean and Soybean Foods. Korea Soybean Digest 16(2) : 35-46.
  7. Kim, S. H., W. S. Jung, J. K. Ahn, J. A. Kim, and I. M. Chung. 2005. Quantitative analysis of the isoflavone content and biological growth of soybean(Glycine max L.) at elevated temperature, CO2 level and application. J. Sci. of Food and Agri. 85(15) : 2557-2566. https://doi.org/10.1002/jsfa.2294
  8. Kitamura. K., K. Ijita, A. Kikuchi, S. Kodou, and K. okubo. 1991. Low isoflavone content in some early maturing Cultivars, so-called "summertype soybeans"(Glycine max (L) Merrill). Japan J. Breeding 41 : 651-654. https://doi.org/10.1270/jsbbs1951.41.651
  9. Lozovaya, V. V., A. V. Lygina, A. V. Ulanov, R. L. Nelson, and J. M. Widholm. 2005. Effect of temperature and moisture status during seed development on soybean seed isoflavone concentration and compostion. Crop Science. 45 : 1934-1940. https://doi.org/10.2135/cropsci2004.0567
  10. Mercedes, C. C., A. D. P. Beleia, K. Kitamura, and M. C. N. Oliveira. 1999. Effects of genetics and environment on isoflavone content of soybean from different regions of Brazil. Pesq agropec bras., brasila. 34(10) : 1787-1795.
  11. Messinia, M. and V. Messinia. 2003. Provisional recommended soy protein and isoflavone intakes for healthy adults. Rationale Nutr Today 38 : 1000-1009.
  12. Morris, P. F., M. E. Savard, and E. W. B., Ward. 1991. Identification and accumulation of isoflavonoides and Phytophtora megasoerma f. sp. glycinea. Physiol. Molecular Plant pathol. 39(3) : 229-244. https://doi.org/10.1016/0885-5765(91)90006-4
  13. Sakai, T., A. Kikuchi, H. Shimada, Y. Takada, Y. Kono, and S. Shimada. 2005. Evaluation of isoflavone contents and compositions of soybean seed and its relation with seeding time. Jpn. J. Crop Sci. 74(2) : 156-164. https://doi.org/10.1626/jcs.74.156
  14. Swanson, M., M. Stoll, W. Schapaugh, and L. Takemoto. 2004. Isoflavone content of Kansas soybean. American J. of Undergrauate Research 2(4) : 27-32.
  15. Tsukamoto, C., S. Shimada, K. Ijita, K. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean : Changes in isoflavone, saponin and composition of fatty acids at differrent temperatures during seed development. J. Agric. Food Chem.. 43(5) 1184-1192. https://doi.org/10.1021/jf00053a012
  16. Wang, T. T. Y., N. Sathyamoorthy, and J. M. Phang. 1996. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis. 17(2) : 271-275. https://doi.org/10.1093/carcin/17.2.271

피인용 문헌

  1. Variation of Bio-active Substance of Major Soybean Cultivars by Different Sowing Time in Southern Korea vol.59, pp.1, 2014, https://doi.org/10.7740/kjcs.2014.59.1.038
  2. A New Soybean Cultivar, 'Gangpoong' for Soy-Paste and Tofu with Large Seeds and Lodging Resistance vol.50, pp.3, 2012, https://doi.org/10.9787/kjbs.2018.50.3.307
  3. Effect of different planting times on the quantitative variation of total seed isoflavone content and composition in Korean soybean cultivars (Glycine max (L.) Merr.) vol.24, pp.2, 2021, https://doi.org/10.1007/s12892-020-00070-5