DOI QR코드

DOI QR Code

Cardiovascular Diseases and Panax ginseng: A Review on Molecular Mechanisms and Medical Applications

  • Kim, Jong-Hoon (Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
  • Received : 2011.10.14
  • Accepted : 2011.12.14
  • Published : 2012.01.11

Abstract

Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications. Ginseng may also be potentially valuable in treating cardiovascular diseases. Research concerning cardiovascular disease is focusing on purified individual ginsenoside constituents of ginseng to reveal specific mechanisms instead of using whole ginseng extracts. The most commonly studied ginsenosides are $Rb_1$, $Rg_1$, $Rg_3$, $Rh_1$, Re, and Rd. The molecular mechanisms and medical applications of ginsenosides in the treatment of cardiovascular disease have attracted much attention and been the subject of numerous publications. Here, we review the current literature on the myriad pharmacological functions and the potential benefits of ginseng in this area. In vitro investigations using cell cultures and in vivo animal models have indicated ginseng's potential cardiovascular benefits through diverse mechanisms that include antioxidation, modifying vasomotor function, reducing platelet adhesion, influencing ion channels, altering autonomic neurotransmitters release, and improving lipid profiles. Some 40 ginsenosides have been identified. Each may have different effects in pharmacology and mechanisms due to their different chemical structures. This review also summarizes results of relevant clinical trials regarding the cardiovascular effects of ginseng, particularly in the management of hypertension and improving cardiovascular function.

Keywords

References

  1. Kritharides L, Brown A, Brieger D, Ridell T, Zeitz C, Jeremy R, Tonkin A, Walsh W, White H. Overview and determinants of cardiovascular disease in indigenous populations. Heart Lung Circ 2010;19:337-343. https://doi.org/10.1016/j.hlc.2010.02.017
  2. Pratt C. Alternative prevention and treatment of cardiovascular disease, part 2. Prim Care 2010;37:339-366. https://doi.org/10.1016/j.pop.2010.02.010
  3. Ulrich S, Hingorani AD, Martin J, Vallance P. Lifetime risk of developing coronary heart disease. Lancet 1999;353:925.
  4. Tunstall-Pedoe H, Vanuzzo D, Hobbs M, Mahonen M, Cepaitis Z, Kuulasmaa K, Keil U. Estimation of contribution of changes in coronary care to improving survival, event rates, and coronary heart disease mortality across the WHO MONICA Project populations. Lancet 2000;355:688-700. https://doi.org/10.1016/S0140-6736(99)11181-4
  5. Toth PP. Making a case for quantitative assessment of cardiovascular risk. J Clin Lipidol 2007;1:234-241. https://doi.org/10.1016/j.jacl.2007.07.002
  6. Libby P. What have we learned about the biology of atherosclerosis? The role of infl ammation. Am J Cardiol 2001;88(7B):3J-6J.
  7. Libby P. Act local, act global: infl ammation and the multiplicity of "vulnerable" coronary plaques. J Am Coll Cardiol 2005;45:1600-1602. https://doi.org/10.1016/j.jacc.2005.02.058
  8. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993;171:223-229. https://doi.org/10.1002/path.1711710311
  9. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 2005;25:2255-2264. https://doi.org/10.1161/01.ATV.0000184783.04864.9f
  10. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007;116:1832-1844. https://doi.org/10.1161/CIRCULATIONAHA.106.676890
  11. Schechter CB. Longevity and cardiovascular disease: context and overview. Arch Intern Med 2007;167:428-429. https://doi.org/10.1001/archinte.167.5.428
  12. Boudina S, Laclau MN, Tariosse L, Daret D, Gouverneur G, Bonoron-Adele S, Saks VA, Dos Santos P. Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart. Am J Physiol Heart Circ Physiol 2002;282:H821-H831.
  13. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:759-761. https://doi.org/10.1248/cpb.11.759
  14. Shibata S, Tanaka O, Soma K, Ando T, Iida Y, Nakamura H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett 1965;42:207-213.
  15. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  16. Buettner C, Yeh GY, Phillips RS, Mittleman MA, Kaptchuk TJ. Systematic review of the effects of ginseng on cardiovascular risk factors. Ann Pharmacother 2006;40:83-95.
  17. Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr 2007;137(1 Suppl):183S-185S.
  18. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  19. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen CJ. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit 2004;10:RA187- RA192.
  20. Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside $Rg_1$ and $Rb_1$ and its mechanism of action. Acta Pharmacol Sin 2005;26:143-149. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  21. Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 2004;812:119-133.
  22. Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev 2007;13:381-404.
  23. Brekhman II, Dardymov IV. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol 1969;9:419-30. https://doi.org/10.1146/annurev.pa.09.040169.002223
  24. Bittles AH, Fulder SJ, Grant EC, Nicholls MR. The effect of ginseng on lifespan and stress responses in mice. Gerontology 1979;25:125-131. https://doi.org/10.1159/000212330
  25. Zhou DH. Preventive geriatrics: an overview from traditional Chinese medicine. Am J Chin Med 1982;10:32-39. https://doi.org/10.1142/S0192415X82000063
  26. Brekhman II. Panax ginseng. Leningrad: Gosudaarst Isdat et Med Lit, 1957.
  27. Jiang QS, Huang XN, Dai ZK, Yang GZ, Zhou QX, Shi JS, Wu Q. Inhibitory effect of ginsenoside Rb1 on cardiac hypertrophy induced by monocrotaline in rat. J Ethnopharmacol 2007;111:567-572. https://doi.org/10.1016/j.jep.2007.01.006
  28. Cai BX, Li XY, Chen JH, Tang YB, Wang GL, Zhou JG, Qui QY, Guan YY. Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats. Eur J Pharmacol 2009;606:142-149. https://doi.org/10.1016/j.ejphar.2009.01.033
  29. Chen RJ, Chung TY, Li FY, Lin NH, Tzen JT. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacol Sin 2009;30:61-69. https://doi.org/10.1038/aps.2008.6
  30. Choi SH, Lee JH, Pyo MK, Lee BH, Shin TJ, Hwang SH, Kim BR, Lee SM, Oh JW, Kim HC et al. Mutations Leu427, Asn428, and Leu431 residues within transmembrane domain-I-segment 6 attenuate ginsenoside-mediated L-type Ca(2+) channel current inhibitions. Biol Pharm Bull 2009;32:1224-1230. https://doi.org/10.1248/bpb.32.1224
  31. Jeon BH, Kim CS, Park KS, Lee JW, Park JB, Kim KJ, Kim SH, Chang SJ, Nam KY. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. Gen Pharmacol 2000;35:135-141. https://doi.org/10.1016/S0306-3623(01)00096-9
  32. Kang SY, Schini-Kerth VB, Kim ND. Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci 1995;56:1577-1586. https://doi.org/10.1016/0024-3205(95)00124-O
  33. Vuksan V, Stavro M, Woo M, Leiter LA, Sung MK, Sievenpiper JL. Korean red ginseng (Panax ginseng) can lower blood pressure in individuals with hypertension: a randomized controlled trial. Proceedings of the 9th International Ginseng Symposium; 2006 Sep 25-28; Geumsan, Korea. Seoul: Korean Society of Ginseng, 2006.
  34. Kim ND, Kang SY, Schini VB. Ginsenosides evoke endothelium- dependent vascular relaxation in rat aorta. Gen Pharmacol 1994;25:1071-1077. https://doi.org/10.1016/0306-3623(94)90121-X
  35. Baek EB, Yoo HY, Park SJ, Chung YS, Hong EK, Kim SJ. Inhibition of arterial myogenic responses by a mixed aqueous extract of salvia miltiorrhiza and Panax notoginseng (PASEL) showing antihypertensive effects. Korean J Physiol Pharmacol 2009;13:287-293. https://doi.org/10.4196/kjpp.2009.13.4.287
  36. Wagner HN, Liu X. The international textbook of cardiology. New York: Pergamon Press, 1987.
  37. Liu L, Shi R, Shi Q, Cheng Y, Huo Y. Protective effect of saponins from Panax notoginseng against doxorubicininduced cardiotoxicity in mice. Planta Med 2008;74:203-209. https://doi.org/10.1055/s-2008-1034303
  38. Qin N, Gong QH, Wei LW, Wu Q, Huang XN. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull 2008;31:1530-1535. https://doi.org/10.1248/bpb.31.1530
  39. Deng J, Wang YW, Chen WM, Wu Q, Huang XN. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull 2010; 33:631-635. https://doi.org/10.1248/bpb.33.631
  40. Wang YG, Zima AV, Ji X, Pabbidi R, Blatter LA, Lipsius SL. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. Am J Physiol Heart Circ Physiol 2008;295:H851-H859. https://doi.org/10.1152/ajpheart.01242.2007
  41. Wang Z, Li M, Wu WK, Tan HM, Geng DF. Ginsenoside $Rb_1$ preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction. Cardiovasc Drugs Ther 2008;22:443-452. https://doi.org/10.1007/s10557-008-6129-4
  42. Deng J, Lv XT, Wu Q, Huang XN. Ginsenoside Rg(1) inhibits rat left ventricular hypertrophy induced by abdominal aorta coarctation: involvement of calcineurin and mitogen-activated protein kinase signalings. Eur J Pharmacol 2009;608:42-47. https://doi.org/10.1016/j.ejphar.2009.01.048
  43. Wang YL, Wang CY, Zhang BJ, Zhang ZZ. Shenfu injection suppresses apoptosis by regulation of Bcl-2 and caspase-3 during hypoxia/reoxygenation in neonatal rat cardiomyocytes in vitro. Mol Biol Rep 2009;36:365-370. https://doi.org/10.1007/s11033-007-9188-x
  44. Yook T, Yu J, Lee H, Song B, Kim L, Roh J, Shin J, Lim S. Comparing the effects of distilled rehmannia glutinosa, wild ginseng and astragali radix pharmacopuncture with heart rate variability (HRV): a randomized, sham-controlled and double-blind clinical trial. J Acupunct Meridian Stud 2009;2:239-247. https://doi.org/10.1016/S2005-2901(09)60061-3
  45. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL et al. Ginsenoside $Rg_1$ protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108:117-124. https://doi.org/10.1002/jcb.22233
  46. Kim TH, Lee SM. The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 2010;48:1516-1520. https://doi.org/10.1016/j.fct.2010.03.018
  47. Wu Y, Xia ZY, Dou J, Zhang L, Xu JJ, Zhao B, Lei S, Liu HM. Protective effect of ginsenoside $Rb_1$ against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep 2011;38:4327-4335. https://doi.org/10.1007/s11033-010-0558-4
  48. Bodiga S, Wang W, Oudit GY. Use of ginseng to reduce post-myocardial adverse myocardial remodeling: applying scientific principles to the use of herbal therapies. J Mol Med (Berl) 2011;89:317-320. https://doi.org/10.1007/s00109-011-0736-4
  49. Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, Karmazyn M. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail 2011;4:79-88. https://doi.org/10.1161/CIRCHEARTFAILURE.110.957969
  50. Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, Oshita S. Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. Life Sci 2011;88:725-729. https://doi.org/10.1016/j.lfs.2011.02.011
  51. Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH, Liu L. Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOSdependent mechanism. J Ethnopharmacol 2011;135:287-298. https://doi.org/10.1016/j.jep.2011.03.015
  52. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, Browner D. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 1992;326:381-386. https://doi.org/10.1056/NEJM199202063260605
  53. Schouten O, Poldermans D. Cardiac risk in non-cardiac surgery. Br J Surg 2007;94:1185-1186. https://doi.org/10.1002/bjs.5985
  54. He F, Guo R, Wu SL, Sun M, Li M. Protective effects of ginsenoside $Rb_1$ on human umbilical vein endothelial cells in vitro. J Cardiovasc Pharmacol 2007;50:314-320. https://doi.org/10.1097/FJC.0b013e3180cab12e
  55. Kim YM, Namkoong S, Yun YG, Hong HD, Lee YC, Ha KS, Lee H, Kwon HJ, Kwon YG, Kim YM. Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol Pharm Bull 2007;30:1674-1679. https://doi.org/10.1248/bpb.30.1674
  56. Leung KW, Yung KK, Mak NK, Yue PY, Luo HB, Cheng YK, Fan TP, Yeung HW, Ng TB, Wong RN. Angiomodulatory and neurological effects of ginsenosides. Curr Med Chem 2007;14:1371-1380. https://doi.org/10.2174/092986707780597916
  57. Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A, Yasui S. The phytoestrogen ginsensoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. J Med Invest 2007;54:381-384. https://doi.org/10.2152/jmi.54.381
  58. Leung KW, Leung FP, Huang Y, Mak NK, Wong RN. Non-genomic effects of ginsenoside-Re in endothelial cells via glucocorticoid receptor. FEBS Lett 2007;581: 2423-2428. https://doi.org/10.1016/j.febslet.2007.04.055
  59. Papapetropoulos A. A ginseng-derived oestrogen receptor beta (ERbeta) agonist, Rb1 ginsenoside, attenuates capillary morphogenesis. Br J Pharmacol 2007;152:172-174. https://doi.org/10.1038/sj.bjp.0707360
  60. Yu J, Eto M, Akishita M, Kaneko A, Ouchi Y, Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside $Rb_1$ in human aortic endothelial cells: a possible involvement of androgen receptor. Biochem Biophys Res Commun 2007;353:764-769. https://doi.org/10.1016/j.bbrc.2006.12.119
  61. Yu LC, Chen SC, Chang WC, Huang YC, Lin KM, Lai PH, Sung HW. Stability of angiogenic agents, ginsenoside $Rg_1$ and Re, isolated from Panax ginseng: in vitro and in vivo studies. Int J Pharm 2007;328:168-176. https://doi.org/10.1016/j.ijpharm.2006.08.009
  62. Lei Y, Gao Q, Chen KJ. Effects of extracts from Panax notoginseng and Panax ginseng fruit on vascular endothelial cell proliferation and migration in vitro. Chin J Integr Med 2008;14:37-41. https://doi.org/10.1007/s11655-008-0037-0
  63. Lin KM, Hsu CH, Rajasekaran S. Angiogenic evaluation of ginsenoside Rg1 from Panax ginseng in fluorescent transgenic mice. Vascul Pharmacol 2008;49:37-43. https://doi.org/10.1016/j.vph.2008.05.002
  64. Chan LS, Yue PY, Mak NK, Wong RN. Role of microRNA- 214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 2009;38:370-377. https://doi.org/10.1016/j.ejps.2009.08.008
  65. Hong SJ, Wan JB, Zhang Y, Hu G, Lin HC, Seto SW, Kwan YW, Lin ZX, Wang YT, Lee SM. Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafi sh in vivo. Phytother Res 2009;23:677-686. https://doi.org/10.1002/ptr.2705
  66. Wan JB, Lee SM, Wang JD, Wang N, He CW, Wang YT, Kang JX. Panax notoginseng reduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-alphainduced endothelial adhesion molecule expression and monocyte adhesion. J Agric Food Chem 2009;57:6692- 6697. https://doi.org/10.1021/jf900529w
  67. Hien TT, Kim ND, Pokharel YR, Oh SJ, Lee MY, Kang KW. Ginsenoside $Rg_3$ increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase. Toxicol Appl Pharmacol 2010;246:171-183. https://doi.org/10.1016/j.taap.2010.05.008
  68. Jeong A, Lee HJ, Jeong SJ, Lee HJ, Lee EO, Bae H, Kim SH. Compound K inhibits basic fi broblast growth factorinduced angiogenesis via regulation of p38 mitogen activated protein kinase and AKT in human umbilical vein endothelial cells. Biol Pharm Bull 2010;33:945-950. https://doi.org/10.1248/bpb.33.945
  69. Cheung LW, Leung KW, Wong CK, Wong RN, Wong AS. Ginsenoside-$Rg_1$ induces angiogenesis via non-genomic crosstalk of glucocorticoid receptor and fi broblast growth factor receptor-1. Cardiovasc Res 2011;89:419-425. https://doi.org/10.1093/cvr/cvq300
  70. He W, Wu WK, Wu YL, Yang XH, Lin QX, Yu WH. Ginsenoside-$Rg_1$ mediates microenvironment-dependent endothelial differentiation of human mesenchymal stem cells in vitro. J Asian Nat Prod Res 2011;13:1-11. https://doi.org/10.1080/10286020.2010.535519
  71. Xu Z, Lan T, Wu W, Wu Y. The effects of ginsenoside $Rb_1$ on endothelial damage and ghrelin expression induced by hyperhomocysteine. J Vasc Surg 2011;53:156-164. https://doi.org/10.1016/j.jvs.2010.06.170
  72. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989;3:2007-2018.
  73. Ignarro LJ. Biological actions and properties of endothelium- derived nitric oxide formed and released from artery and vein. Circ Res 1989;65:1-21. https://doi.org/10.1161/01.RES.65.1.1
  74. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-142.
  75. Leung KW, Cheng YK, Mak NK, Chan KK, Fan TP, Wong RN. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 2006;580:3211-3216. https://doi.org/10.1016/j.febslet.2006.04.080
  76. Kang YJ, Sohn JT, Chang KC. Relaxation of canine corporal smooth muscle relaxation by ginsenoside saponin Rg3 is independent from eNOS activation. Life Sci 2005;77:74-84. https://doi.org/10.1016/j.lfs.2004.12.016
  77. Jovanovski E, Jenkins A, Dias AG, Peeva V, Sievenpiper J, Arnason JT, Rahelic D, Josse RG, Vuksan V. Effects of Korean red ginseng (Panax ginseng C.A. Mayer) and its isolated ginsenosides and polysaccharides on arterial stiffness in healthy individuals. Am J Hypertens 2010;23:469-472. https://doi.org/10.1038/ajh.2010.5
  78. Lee JY, Lim KM, Kim SY, Bae ON, Noh JY, Chung SM, Kim K, Shin YS, Lee MY, Chung JH. Vascular smooth muscle dysfunction and remodeling induced by ginsenoside $Rg_3$, a bioactive component of ginseng. Toxicol Sci 2010;117:505-514. https://doi.org/10.1093/toxsci/kfq201
  79. Wang T, Yu XF, Qu SC, Xu HL, Sui DY. Ginsenoside $Rb_3$ inhibits angiotensin II-induced vascular smooth muscle cells proliferation. Basic Clin Pharmacol Toxicol 2010;107:685-689. https://doi.org/10.1111/j.1742-7843.2010.00560.x
  80. Wu L, Zhang W, Tang YH, Li H, Chen BY, Zhang GM, Deng CQ. Effect of total saponins of "Panax notoginseng root" on aortic intimal hyperplasia and the expressions of cell cycle protein and extracellular matrix in rats. Phytomedicine 2010;17:233-240. https://doi.org/10.1016/j.phymed.2009.07.021
  81. Rhee MY, Kim YS, Bae JH, Nah DY, Kim YK, Lee MM, Kim HY. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Altern Complement Med 2011;17:45-49. https://doi.org/10.1089/acm.2010.0065
  82. Tamura Y. Effects of Korean red ginseng on eicosanoid biosynthesis in platelets and vascular smooth muscle cells. Proceedings of the 6th Internationa1 Ginseng Symposium; 1993 Sep 6-9; Seoul, Korea. Daejeon: Korea Ginseng & Tobacco Research Institute, 1993.
  83. Harima S, Matsuda H, Kubo M. Study of various rhubarbs regarding the cathartic effect and endotoxin-induced disseminated intravascular coagulation. Biol Pharm Bull 1994;17:1522-1525. https://doi.org/10.1248/bpb.17.1522
  84. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 2007;100:170-175. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  85. Lee WM, Kim SD, Park MH, Cho JY, Park HJ, Seo GS, Rhee MH. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: critical roles of ERK2 and cAMP. J Pharm Pharmacol 2008;60:1531-1536. https://doi.org/10.1211/jpp.60.11.0015
  86. Li GX, Liu ZQ. The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis. Food Chem Toxicol 2008;46:886-892. https://doi.org/10.1016/j.fct.2007.10.020
  87. Wang J, Huang ZG, Cao H, Wang YT, Hui P, Hoo C, Li SP. Screening of anti-platelet aggregation agents from Panax notoginseng using human platelet extraction and HPLC-DAD-ESI-MS/MS. J Sep Sci 2008;31:1173-1180. https://doi.org/10.1002/jssc.200700507
  88. Yang JY, Sun K, Wang CS, Guo J, Xue X, Liu YY, Zheng J, Fan JY, Liao FL, Han JY. Improving effect of posttreatment with Panax notoginseng saponins on lipopolysaccharide- induced microcirculatory disturbance in rat mesentery. Clin Hemorheol Microcirc 2008;40:119-131.
  89. Lau AJ, Toh DF, Chua TK, Pang YK, Woo SO, Koh HL. Antiplatelet and anticoagulant effects of Panax notoginseng: comparison of raw and steamed Panax notoginseng with Panax ginseng and Panax quinquefolium. J Ethnopharmacol 2009;125:380-386. https://doi.org/10.1016/j.jep.2009.07.038
  90. Lee JG, Lee YY, Kim SY, Pyo JS, Yun-Choi HS, Park JH. Platelet antiaggregating activity of ginsenosides isolated from processed ginseng. Pharmazie 2009;64:602-604.
  91. Lee JG, Lee YY, Wu B, Kim SY, Lee YJ, Yun-Choi HS, Park JH. Inhibitory activity of ginsenosides isolated from processed ginseng on platelet aggregation. Pharmazie 2010;65:520-522.
  92. Lee YH, Lee BK, Choi YJ, Yoon IK, Chang BC, Gwak HS. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int J Cardiol 2010;145:275-276. https://doi.org/10.1016/j.ijcard.2009.09.553
  93. Yi XQ, Li T, Wang JR, Wong VK, Luo P, Wong IY, Jiang ZH, Liu L, Zhou H. Total ginsenosides increase coronary perfusion fl ow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling. Phytomedicine 2010;17:1006-1015. https://doi.org/10.1016/j.phymed.2010.06.012
  94. Ahn CM, Hong SJ, Choi SC, Park JH, Kim JS, Lim DS. Red ginseng extract improves coronary fl ow reserve and increases absolute numbers of various circulating angiogenic cells in patients with first ST-segment elevation acute myocardial infarction. Phytother Res 2011;25:239-249.
  95. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002;287:356-359. https://doi.org/10.1001/jama.287.3.356
  96. Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegar DA, Blanchard DE, Spencer TA et al. Activation of the nuclear receptor LXR by oxysterols defi nes a new hormone response pathway. J Biol Chem 1997;272:3137-3140. https://doi.org/10.1074/jbc.272.6.3137
  97. Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J Agric Food Chem 2007;55:2824-2828. https://doi.org/10.1021/jf0628025
  98. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J Microbiol Biotechnol 2007;17:1127-1133.
  99. Hwang SY, Son DJ, Kim IW, Kim DM, Sohn SH, Lee JJ, Kim SK. Korean red ginseng attenuates hypercholesterolemia- enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother Res 2008;22:778-783. https://doi.org/10.1002/ptr.2363
  100. Zhang YG, Zhang HG, Zhang GY, Fan JS, Li XH, Liu YH, Li SH, Lian XM, Tang Z. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profi le and an anti-infl ammatory action. Clin Exp Pharmacol Physiol 2008;35:1238-1244. https://doi.org/10.1111/j.1440-1681.2008.04997.x
  101. Liu G, Wang B, Zhang J, Jiang H, Liu F. Total panax notoginsenosides prevent atherosclerosis in apolipoprotein E-knockout mice: role of downregulation of CD40 and MMP-9 expression. J Ethnopharmacol 2009;126:350-354. https://doi.org/10.1016/j.jep.2009.08.014
  102. Jia Y, Li ZY, Zhang HG, Li HB, Liu Y, Li XH. Panax notoginseng saponins decrease cholesterol ester via upregulating ATP-binding cassette transporter A1 in foam cells. J Ethnopharmacol 2010;132:297-302. https://doi.org/10.1016/j.jep.2010.08.033
  103. Kwak YS, Kyung JS, Kim JS, Cho JY, Rhee MH. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng. Biol Pharm Bull 2010;33:468-472. https://doi.org/10.1248/bpb.33.468
  104. Liu Y, Zhang HG, Jia Y, Li XH. Panax notoginseng saponins attenuate atherogenesis accelerated by zymosan in rabbits. Biol Pharm Bull 2010;33:1324-1330. https://doi.org/10.1248/bpb.33.1324
  105. Xia W, Sun C, Zhao Y, Wu L. Hypolipidemic and antioxidant activities of sanchi (radix notoginseng) in rats fed with a high fat diet. Phytomedicine 2011;18:516-520. https://doi.org/10.1016/j.phymed.2010.09.007
  106. Li J, Xie ZZ, Tang YB, Zhou JG, Guan YY. Ginsenoside-Rd, a purifi ed component from Panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur J Pharmacol 2011;652:104-110. https://doi.org/10.1016/j.ejphar.2010.11.017
  107. Bolli R. Superoxide dismutase 10 years later: a drug in search of a use. J Am Coll Cardiol 1991;18:231-233. https://doi.org/10.1016/S0735-1097(10)80244-X
  108. Gross GJ, Farber NE, Hardman HF, Warltier DC. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986;250(3 Pt 2):H372- H377.
  109. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A 1987;84:1404-1407. https://doi.org/10.1073/pnas.84.5.1404
  110. Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH. Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 1996;79:381-387. https://doi.org/10.1161/01.RES.79.3.381
  111. Taniguchi M, Wilson C, Hunter CA, Pehowich DJ, Clanachan AS, Lopaschuk GD. Dichloroacetate improves cardiac effi ciency after ischemia independent of changes in mitochondrial proton leak. Am J Physiol Heart Circ Physiol 2001;280:H1762- H1769.
  112. Abdel-Wahhab MA, Ahmed HH. Protective effect of Korean Panax ginseng against chromium VI toxicity and free radicals generation in rats. J Ginseng Res 2004;28:11-17.
  113. Chung YH, Kim KW, Oura H. Effects of ginsenoside $Rb_2$ on the anti-oxidants in senescence-accelerated mice (SAM-R/1). Proceedings of the 6th Internationa1 Ginseng Symposium; 1993 Sep 6-9; Seoul, Korea. Daejeon: Korea Ginseng & Tobacco Research Institute, 1993.
  114. Chang HM; Chinese University of Hong Kong; Chinese Medicinal Research Centre. Advances in Chinese medicinal materials research. Philadelphia: World Scientifi c, 1985.
  115. Kim H, Chen X, Gillis CN. Ginsenosides protect pulmonary vascular endothelium against free radical-induced injury. Biochem Biophys Res Commun 1992;189:670-676. https://doi.org/10.1016/0006-291X(92)92253-T
  116. Kim YK, Guo Q, Packer L. Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 2002;172:149-156. https://doi.org/10.1016/S0300-483X(01)00585-6
  117. Samukawa K, Suzuki Y, Ohkubo N, Aoto M, Sakanaka M, Mitsuda N. Protective effect of ginsenosides Rg(2) and Rh(1) on oxidation-induced impairment of erythrocyte membrane properties. Biorheology 2008;45:689-700.
  118. Li XT, Chen R, Jin LM, Chen HY. Regulation on energy metabolism and protection on mitochondria of Panax ginseng polysaccharide. Am J Chin Med 2009;37:1139-1152. https://doi.org/10.1142/S0192415X09007454
  119. Li J, Ichikawa T, Jin Y, Hofseth LJ, Nagarkatti P, Nagarkatti M, Windust A, Cui T. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes. J Ethnopharmacol 2010;130:222-230. https://doi.org/10.1016/j.jep.2010.03.040
  120. Fu Y, Ji LL. Chronic ginseng consumption attenuates age-associated oxidative stress in rats. J Nutr 2003;133:3603-3609.
  121. Chen X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin Exp Pharmacol Physiol 1996;23:728-732. https://doi.org/10.1111/j.1440-1681.1996.tb01767.x
  122. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Ginsenoside $Rb_1$ blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41:861-868. https://doi.org/10.1016/j.jvs.2005.01.054
  123. Wang X, Chai H, Yao Q, Chen C. Molecular mechanisms of HIV protease inhibitor-induced endothelial dysfunction. J Acquir Immune Defi c Syndr 2007;44:493-499. https://doi.org/10.1097/QAI.0b013e3180322542
  124. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2006;532:201-207. https://doi.org/10.1016/j.ejphar.2006.01.001
  125. Deng HL, Zhang JT. Anti-lipid peroxilative effect of ginsenoside $Rb_1$ and $Rg_1$. Chin Med J (Engl) 1991;104:395-398.
  126. Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M. Protection of ischemic hippocampal neurons by ginsenoside $Rb_1$, a main ingredient of ginseng root. Neurosci Res 1997;28:191-200. https://doi.org/10.1016/S0168-0102(97)00041-2
  127. Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K. Neuroprotective effect of 20(S)-ginsenoside $Rg_3$ on cerebral ischemia in rats. Neurosci Lett 2005;374:92-97. https://doi.org/10.1016/j.neulet.2004.10.030
  128. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767

Cited by

  1. Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig vol.17, pp.4, 2013, https://doi.org/10.4196/kjpp.2013.17.4.283
  2. Red-Koji Fermented Red Ginseng Ameliorates High Fat Diet-Induced Metabolic Disorders in Mice vol.5, pp.11, 2013, https://doi.org/10.3390/nu5114316
  3. Comparative mRNA and microRNA expression profiling of methylglyoxal-exposed human endothelial cells vol.7, pp.2, 2013, https://doi.org/10.1007/s13206-013-7207-7
  4. An integrated analysis of microRNA and mRNA expression in salvianolic acid B-treated human umbilical vein endothelial cells vol.9, pp.1, 2013, https://doi.org/10.1007/s13273-013-0001-8
  5. Cardioprotective Effect of Rhizomes of Acorus gramineus Against Isoproterenol-Induced Cardiac Damage in Pigs vol.14, pp.2, 2014, https://doi.org/10.1007/s12012-014-9243-5
  6. Ginsenoside Rg1 Prevents Cognitive Impairment and Hippocampus Senescence in a Rat Model of D-Galactose-Induced Aging vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0101291
  7. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury vol.94, pp.10, 2014, https://doi.org/10.1038/labinvest.2014.101
  8. The Long-Term Consumption of Ginseng Extract Reduces the Susceptibility of Intermediate-Aged Hearts to Acute Ischemia Reperfusion Injury vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0144733
  9. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: Involvement of anti-oxidant signaling vol.17, pp.2, 2017, https://doi.org/10.1111/ggi.12699
  10. Anti-inflammatory potential of saponins derived from cultured wild ginseng roots in lipopolysaccharide-stimulated RAW 264.7 macrophages vol.35, pp.6, 2015, https://doi.org/10.3892/ijmm.2015.2165
  11. Recent trends of nano bioactive compounds from ginseng for its possible preventive role in chronic disease models vol.5, pp.119, 2015, https://doi.org/10.1039/C5RA20559J
  12. in rats: in vitro and in vivo insights from quantitative ultra-performance liquid chromatography-mass spectrometry analysis vol.7, pp.15, 2015, https://doi.org/10.1039/C5AY01098E
  13. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy vol.21, pp.3, 2016, https://doi.org/10.3390/molecules21030359
  14. Antioxidant and hepatoprotective effects of fermented red ginseng against high fat diet-induced hyperlipidemia in rats vol.32, pp.4, 2016, https://doi.org/10.5625/lar.2016.32.4.217
  15. TCM, brain function and drug space vol.33, pp.1, 2016, https://doi.org/10.1039/C5NP00049A
  16. Anti-hypertensive Herbs and their Mechanisms of Action: Part I vol.6, pp.1663-9812, 2015, https://doi.org/10.3389/fphar.2015.00323
  17. Chinese Herbal Medicine on Cardiovascular Diseases and the Mechanisms of Action vol.7, pp.1663-9812, 2016, https://doi.org/10.3389/fphar.2016.00469
  18. Herbs Used for the Treatment of Hypertension and their Mechanism of Action vol.19, pp.9, 2017, https://doi.org/10.1007/s11906-017-0775-5
  19. Study on Transformation of Ginsenosides in Different Methods vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/8601027
  20. Ginsenoside Rg1 improves fertility and reduces ovarian pathological damages in premature ovarian failure model of mice vol.242, pp.7, 2017, https://doi.org/10.1177/1535370217693323
  21. Combination of ginsenoside Rb1 and Rd protects the retina against bright light-induced degeneration vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-06471-x
  22. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03039-7
  23. Global deregulation of ginseng products may be a safety hazard to warfarin takers: solid evidence of ginseng-warfarin interaction vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05825-9
  24. Anti-adipogenic Effects and Mechanisms of Ginsenoside Rg3 in Pre-adipocytes and Obese Mice vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00113
  25. Integrated Transcriptomic and Metabolomic Analysis of Five Panax ginseng Cultivars Reveals the Dynamics of Ginsenoside Biosynthesis vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.01048
  26. Effect of Shen-Fu Injection (参附注射液) on hemodynamics in early volume resuscitation treated septic shock patients pp.1993-0402, 2017, https://doi.org/10.1007/s11655-017-2965-z
  27. ) Decreases Isoproterenol-Induced Cardiac Injury via Antioxidant Properties in Porcine vol.17, pp.1, 2014, https://doi.org/10.1089/jmf.2013.2768
  28. using simultaneous UPLC-ESI-MS/MS vol.38, pp.4, 2018, https://doi.org/10.1111/jfs.12458
  29. Ginsenosides: A Potential Neuroprotective Agent vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/8174345
  30. Therapeutic Potential of Ginsenosides as an Adjuvant Treatment for Diabetes vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00423
  31. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment vol.10, pp.1663-9812, 2019, https://doi.org/10.3389/fphar.2019.00123
  32. B in HUVECs following LPS Stimulation vol.2019, pp.1942-0994, 2019, https://doi.org/10.1155/2019/9425183
  33. Effect of Korean red ginseng extract on liver damage induced by shortterm and long-term ethanol treatment in rats vol.37, pp.2, 2013, https://doi.org/10.5142/jgr.2013.37.194
  34. Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach vol.37, pp.3, 2012, https://doi.org/10.5142/jgr.2013.37.283
  35. Bidirectional regulation of angiogenesis and miR-18a expression by PNS in the mouse model of tumor complicated by myocardial ischemia vol.14, pp.None, 2012, https://doi.org/10.1186/1472-6882-14-183
  36. Protective effects of ginseng extracts and common anti-aggregant drugs on ischaemia–reperfusion injury vol.26, pp.6, 2012, https://doi.org/10.5830/cvja-2015-047
  37. Ginsenoside Rg3 Improves Cardiac Function after Myocardial Ischemia/Reperfusion via Attenuating Apoptosis and Inflammation vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/6967853
  38. Rg3-enriched Korean Red Ginseng enhances blood pressure stability in spontaneously hypertensive rats vol.5, pp.3, 2016, https://doi.org/10.1016/j.imr.2016.05.006
  39. Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng vol.40, pp.4, 2012, https://doi.org/10.1016/j.jgr.2015.09.003
  40. Comparative analysis of chloroplast DNA sequences of Codonopsis lanceolata and Platycodon grandiflorus and application in development of molecular markers vol.60, pp.1, 2012, https://doi.org/10.1007/s13765-016-0248-6
  41. Herbal products containing Hibiscus sabdariffa L., Crataegus spp., and Panax spp.: Labeling and safety concerns vol.100, pp.1, 2012, https://doi.org/10.1016/j.foodres.2017.07.031
  42. Role of ginsenosides in reactive oxygen species-mediated anticancer therapy vol.9, pp.2, 2018, https://doi.org/10.18632/oncotarget.23407
  43. Electrodeposition of Ginseng/Polyaniline Encapsulated Poly(lactic-co-glycolic Acid) Microcapsule Coating on Stainless Steel 316L at Different Deposition Parameters vol.67, pp.5, 2012, https://doi.org/10.1248/cpb.c18-00847
  44. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties vol.11, pp.5, 2012, https://doi.org/10.3390/nu11051041
  45. Neuroprotective Effects of Red Ginseng Saponins in Scopolamine-Treated Rats and Activity Screening Based on Pharmacokinetics vol.24, pp.11, 2012, https://doi.org/10.3390/molecules24112136
  46. Microbial Metabolites Determine Host Health and the Status of Some Diseases vol.20, pp.21, 2012, https://doi.org/10.3390/ijms20215296
  47. Ginsenoside Rb2 Ameliorates LPS-Induced Inflammation and ER Stress in HUVECs and THP-1 Cells via the AMPK-Mediated Pathway vol.48, pp.4, 2012, https://doi.org/10.1142/s0192415x20500469
  48. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems vol.27, pp.4, 2020, https://doi.org/10.2174/0929867326666190809221332
  49. Antihypertensive Effects of Rg3-Enriched Korean Vitamin Ginseng in Spontaneously Hypertensive Rats vol.15, pp.1, 2012, https://doi.org/10.1177/1934578x19900712
  50. Preventive treatment with ginsenoside Rb1 ameliorates monocrotaline-induced pulmonary arterial hypertension in rats and involves store-operated calcium entry inhibition vol.58, pp.1, 2012, https://doi.org/10.1080/13880209.2020.1831026
  51. Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7829842
  52. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety vol.11, pp.None, 2012, https://doi.org/10.3389/fphar.2020.00422
  53. Notoginsenoside R1–Induced Neuronal Repair in Models of Alzheimer Disease Is Associated With an Alteration in Neuronal Hyperexcitability, Which Is Regulated by Nav vol.14, pp.None, 2012, https://doi.org/10.3389/fncel.2020.00280
  54. Potential benefits of garlic and other dietary supplements for the management of hypertension vol.19, pp.2, 2012, https://doi.org/10.3892/etm.2019.8375
  55. Molecular Drug Discovery of Single Ginsenoside Compounds as a Potent Bruton’s Tyrosine Kinase Inhibitor vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093065
  56. Characteristics of Panax ginseng Cultivars in Korea and China vol.25, pp.11, 2012, https://doi.org/10.3390/molecules25112635
  57. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation vol.69, pp.7, 2020, https://doi.org/10.1136/gutjnl-2019-319114
  58. Different absorption and metabolism of ginsenosides after the administration of total ginsenosides and decoction of Panax ginseng vol.34, pp.13, 2020, https://doi.org/10.1002/rcm.8788
  59. Pseudo-ginsengenin DQ ameliorated aconitine-induced arrhythmias by influencing Ca2+ and K+ currents in ventricular myocytes vol.10, pp.43, 2020, https://doi.org/10.1039/d0ra01683g
  60. Biochemical and molecular characterization of enhanced growth of Panax ginseng C. A. Meyer treated with atmospheric pressure plasma vol.53, pp.49, 2020, https://doi.org/10.1088/1361-6463/abad61
  61. An LCI‐like protein APC2 protects ginseng root from Fusarium solani infection vol.130, pp.1, 2012, https://doi.org/10.1111/jam.14771
  62. Ginsenoside Rc Ameliorates Endothelial Insulin Resistance via Upregulation of Angiotensin-Converting Enzyme 2 vol.12, pp.None, 2012, https://doi.org/10.3389/fphar.2021.620524
  63. Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective vol.12, pp.None, 2012, https://doi.org/10.3389/fphar.2021.734151
  64. Recent progress in polysaccharides from Panax ginseng C. A. Meyer vol.12, pp.2, 2012, https://doi.org/10.1039/d0fo01896a
  65. Identification of Specific Glycosyltransferases Involved in Flavonol Glucoside Biosynthesis in Ginseng Using Integrative Metabolite Profiles, DIA Proteomics, and Phylogenetic Analysis vol.69, pp.5, 2012, https://doi.org/10.1021/acs.jafc.0c06989
  66. Effect of Korean Red Ginseng on metabolic syndrome vol.45, pp.3, 2012, https://doi.org/10.1016/j.jgr.2020.11.002
  67. Herbal Extract from Codonopsis pilosula (Franch.) Nannf. Enhances Cardiogenic Differentiation and Improves the Function of Infarcted Rat Hearts vol.11, pp.5, 2012, https://doi.org/10.3390/life11050422
  68. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism vol.69, pp.21, 2012, https://doi.org/10.1021/acs.jafc.1c01231
  69. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism vol.69, pp.21, 2012, https://doi.org/10.1021/acs.jafc.1c01231
  70. Production of Minor Ginsenosides C-K and C-Y from Naturally Occurring Major Ginsenosides Using Crude β-Glucosidase Preparation from Submerged Culture of Fomitella fraxinea vol.26, pp.16, 2021, https://doi.org/10.3390/molecules26164820
  71. Medicinal Plants in the Treatment of Hypertension: A Review vol.11, pp.4, 2021, https://doi.org/10.34172/apb.2021.090
  72. Use of Acyl-Homoserine Lactones Leads to Improved Growth of Ginseng Seedlings and Shifts in Soil Microbiome Structure vol.11, pp.11, 2012, https://doi.org/10.3390/agronomy11112177
  73. Systematic investigation for the mechanisms and the substance basis of Yang–Xin–Ding–Ji capsule based on the metabolite profile and network pharmacology vol.35, pp.12, 2012, https://doi.org/10.1002/bmc.5202