DOI QR코드

DOI QR Code

Variation Patterns in Concentration of Inorganic Nitrogen from Liquid Grass Fertilizer during Aerobic Incubation

항온 호기 배양 조건에서 잔디 예초물 액비로부터 무기화된 질소의 농도 변화

  • Lee, Tae-Kyu (Department of Agricultural Biotechnology, Seoul National University) ;
  • Park, Ji-Suk (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Min-Jin (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Jong-Sung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ro, Hee-Myong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Sang-Jun (Nature and people Co. Ltd.) ;
  • Jeon, Seung-Woo (Nature and people Co. Ltd.) ;
  • Seo, Sang-Gug (Nature and people Co. Ltd.) ;
  • Kim, Kil-Yong (Department of Applied Bioscience and Biotechnology, Chonnam National University) ;
  • Lee, Geon-Hyoung (Department of Biology, Kunsan National University) ;
  • Jeong, Byung-Gon (Department of Environmental Engineering, Kunsan National University)
  • Received : 2012.11.29
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

To assess fertilizer value of an quasi-aerobically fermented liquid clipped-grass fertilizer, aerobic incubation experiment using two texturally contrasting loam (L) and sandy loam (SL) soils was conducted for 60 days to investigate temporal variations in N mineralization pattern of the liquid fertilizer applied. To do so, the quasi-aerobically fermented liquid clipped-grass fertilizer was prepared, applied to each soil at a rate of 200 kg-N $ha^{-1}$ and aerobically $25^{\circ}C$ in the dark. During incubation, soil water content was adjusted to field moisture capacity (-33 kPa of soil matric potential) by adding distilled water as necessary to maintain their initial weights. At desired time of incubation (0, 1, 5, 10, 20, 40, and 60 days after incubation), soil was sampled and analyzed for inorganic nitrogen ($NH_4{^+}$-N and $NO_3{^-}$-N) concentrations, pH, EC, total carbon contents and total nitrogen contents. Concentrations of $NH_4{^+}$-N began to decrease right after incubation for L soils, and 10 days after incubation for SL soils, while those of $NO_3{^-}$-N began to increase onset of $NH_4{^+}$-N disappearance. The results of this study showed that quasi-aerobically fermented liquid clipped-grass fertilizer could serve as an alternative to chemical N fertilizer.

이번 연구에서는 잔디 예초물 혼합액비가 지닌 질소질비료로서의 가치를 평가하기 위해 사양토와 양토에 잔디 예초물 혼합액비를 처리 후 $25^{\circ}C$에서 60일간의 항온배양실험을 진행하였고 배양기간 동안의 pH, 전기전도도, 질소의 무기화와 질산화의 변화를 조사하였다. 잔디 예초물 혼합액비를 시용하였을 경우 토양 내에서 무기화가 일어나지 않았고 혼합액비 내의 무기태질소가 질산화작용을 통해 질산태 질소를 발생시키는 것을 보았는데 60일간의 배양 결과 양토에서는 $185.58mg\;kg^{-1}$의 질산태 질소가 존재하였고 사양토의 경우 $130.05mg\;kg^{-1}$의 질산태 질소가 존재하는 것을 볼 수 있었다. 하지만 잔디 예초물 혼합액비를 현행 질소 시비수준으로 처리하였을 경우 사양토에서 pH 5.1, EC (1:5) $0.50dS\;m^{-1}$로 나타났고, 양토에서 pH 7.2, EC (1:5) $0.65dS\;m^{-1}$를 나타냄으로써 산성화와 염류집적을 일으킬 가능성도 함께 보여주었다. 결론적으로 본 연구를 통하여 잔디 예초물 혼합액비가 질소질 비료를 대체하여 사용할 수 있음을 보여줌으로써 유기 부산물을 재활용한 질소 공급원으로서의 이용 가능성을 보여주었다.

Keywords

References

  1. Brady, N.C. and R.R. Weil. 2008. The nature and properties of soils. 14th ed. Peason Prentice Hall, NJ, USA.
  2. Chino, M. 2002. Recycling of nutrients and metals in relation to organic wastes recycling/composting in Japan. Korean Organ. Resour. Recyl. Assoc. SERES 2002:23-25.
  3. Garcia, C., T. Hernandez, and F. Costa. 1992. Variation in some chemical parameters and organic matter in soils regenerated by the addition of municipal solid waste. Environ. Manage. 16(6):763-768. https://doi.org/10.1007/BF02645666
  4. Goeschl, R. and H.K. Lee. 1998. Recent tendency to organic waste treatment in Europe. J. Korea Organ. Resour. Recyl. Assoc. 4-14.
  5. Ha, S.M., K.W. Chang, K.P. Han, J.H. Hong, and J.J. Lee. 2005. Changes of physico-chemical properties and maturity assessment during composting of turfgrass clipping types from the golf courses. J. Korea Organ. Resour. Recyl. Assoc. 13(4):89-99.
  6. Hernandez, T., R. Moral, A. Perez-Espinosa, J. Moreno-Caselles, M.D. Perez-Murcia, and C. Garcia. 2002. Nitrogen mineralisation potential in calcareous soils amended with sewage sludge, Bioresour. Technol. 83:213-219. https://doi.org/10.1016/S0960-8524(01)00224-3
  7. Hopkins, W.G. and N.P.A. Huner. 2008. Introduction to plant physiology. 4th ed. John Wiley & Sons, Inc., Marblehead, MA, USA.
  8. Hotta, S. and N. Funamizu. 2008. Inhibition factor of ammonification in stored urine with fecal contamination. Water Sci. Technol. 58(6):1187:1192.
  9. Kim, Y.K., C.G. Phae, H.K. Choi, S.M. Kim, and E.Y. Hwang. 2005. Physical and chemical analysis of organic wastes for the establishment of total management system. J. Korea Organ. Resour. Recyl. Assoc. 13(1):100-114.
  10. Lee, S.K. 2012a. Effects of liquid fertilizer produced from fermented clippings for Kentucky bluegrass. Asian J. Turfgrass Sci. 26(1): 67-71.
  11. Lee, S.K. 2012b. Irrigation frequency for Kentucky Bluegrass (Poa pratensis) growth. Asian J. Turfgrass Sci. 26(2):123-128.
  12. Maag, M. and F.P. Vinther. 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 4(1):5-14. https://doi.org/10.1016/0929-1393(96)00106-0
  13. Ministry of Environment. 2010. White paper of environment, Gwacheon, Republic of Korea.
  14. Ro, H.M., L.S. Kim, M.J. Lee, H.J. Choi, and C.H. Park. 2008. Soil moisture regime affects variation patterns in concentration of inorganic nitrogen from liquid swine manure during aerobic incubation, Korean J. Soil Sci. Fert. 41(1):34-37.
  15. Shammas, N.K. 1986. Interactions of temperature, pH, and biomass on the nitrification process. J. Water Pollut. Control Federation. 58(1):52-59.
  16. Verkleij, F.N. 1992. Seaweed extracts in agriculture and horticulture: a Review. Biol. Agric. Hortic. 8(4):309-324. https://doi.org/10.1080/01448765.1992.9754608
  17. Wahhab, A., M. Khan, and M. Ishaq. 2009. Nitrification of urea and its loss through volatilization of ammonia under different soil conditions. J. Agric. Sci. 55(1):47-51.
  18. Westerman, P.W. and J.R. Bicudo. 2005. Management considerations for organic waste use in agriculture. Bioresour. Technol. 96(2):215-221. https://doi.org/10.1016/j.biortech.2004.05.011
  19. Yamada, K. and H.L. Xu. 2001. Properties and applications of an organic fertilizer inoculated with effective microorganisms. J. Crop Prod. 3(1):255-268. https://doi.org/10.1300/J144v03n01_21

Cited by

  1. Effect of Mixed Liquid Fertilization on Growth Responses of Red peppers and Soil Chemical Properties vol.48, pp.3, 2015, https://doi.org/10.7745/KJSSF.2015.48.3.225