DOI QR코드

DOI QR Code

Toxicity Assessment of Silver Ions Compared to Silver Nanoparticles in Aqueous Solutions and Soils Using Microtox Bioassay

Microtox 생물검정법을 이용한 은 이온과 은 나노입자의 수용액과 토양에서의 독성 비교 평가

  • Wie, Min-A (Department of Biological Environment, Kangwon National University) ;
  • Oh, Se-Jin (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sung-Chul (Department of Bioenvironmental Chemistry, Chungnam National University) ;
  • Kim, Rog-Young (Department of Biological Environment, Kangwon National University) ;
  • Lee, Sang-Phil (Department of Biological Environment, Kangwon National University) ;
  • Kim, Won-Il (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Yang, Jae E. (Department of Biological Environment, Kangwon National University)
  • 위민아 (강원대학교 바이오자원환경학과) ;
  • 오세진 (강원대학교 바이오자원환경학과) ;
  • 김성철 (충남대학교 생물환경화학과) ;
  • 김록영 (강원대학교 바이오자원환경학과) ;
  • 이상필 (강원대학교 바이오자원환경학과) ;
  • 김원일 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 양재의 (강원대학교 바이오자원환경학과)
  • Received : 2012.11.27
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

This study was conducted to assess the microbial toxicity of ionic silver solution ($Ag^+N$) and silver nanoparticle suspension ($Ag^0NP$) based on the Microtox bioassay. In this test, the light inhibition of luminescent bacteria was measured after 15 and 30 min exposure to aqueous solutions and soils spiked with a dilution series of $Ag^+N$ and $Ag^0NP$. The resulting dose-response curves were used to derive effective concentration (EC25, $EC_{50}$, EC75) and effective dose ($ED_{25}$, $ED_{50}$, $ED_{75}$) that caused a 25, 50 and 75% inhibition of luminescence. In aqueous solutions, $EC_{50}$ value of $Ag^+N$ after 15 min exposure was determined to be < $2mg\;L^{-1}$ and remarkably lower than $EC_{50}$ value of $Ag^0NP$ with $251mg\;L^{-1}$. This revealed that $Ag^+N$ was more toxic to luminescent bacteria than $Ag^0NP$. In soil extracts, however, $ED_{50}$ value of $Ag^+N$ with 196 mg kg-1 was higher than $ED_{50}$ value of $Ag^0NP$ with $104mg\;kg^{-1}$, indicating less toxicity of $Ag^+N$ in soils. The reduced toxicity of $Ag^+N$ in soils can be attributed to a partial adsorption of ionic $Ag^+$ on soil colloids and humic acid as well as a partial formation of insoluble AgCl with NaCl of Microtox diluent. This resulted in lower concentration of active Ag in soil extracts obtained after 1 hour shaking with $Ag^+N$ than that spiked with $Ag^0NP$. With longer exposure time, EC and ED values of both $Ag^+N$ and $Ag^0NP$ decreased, so their toxicity increased. The toxic characteristics of silver nanomaterials were different depending on existing form of Ag ($Ag^+$, $Ag^0$), reaction medium (aqueous solution, soil), and exposure time.

$Ag^+$ 이온을 주성분으로 하는 $Ag^+N$$Ag^0$ 나노입자를 주성분으로 하는 $Ag^0NP$의 미생물학적 독성을 Microtox 생물검정법을 이용하여 수용액과 토양에서 용량-반응관계를 이용하여 비교, 평가하였다. 수용액 실험에서 Vibrio fisheri의 50% 발광 저해율을 보여주는 $EC_{50}$ 값은 $Ag^+N$$Ag^0NP$ 보다 현저히 낮게 나타나, 이온상태의 $Ag^+N$이 독성이 훨씬 높음을 알 수 있었다. 노출시간이 15분에서 30분으로 증가하면 독성 또한 증가했다. 반대로 토양 추출액 실험에서는 $Ag^+N$$ED_{50}$ 값이 $Ag^0NP$의 값 보다 높아, $Ag^+N$의 독성이 더 낮게 나타났다. 이것은 $Ag^+N$$Ag^+$가 토양 입자 또는 부식산에 강하게 흡착 되거나, Microtox 희석제 NaCl과 반응하여 난용해성 AgCl 침전물을 형성하여, 토양 추출액 중의 활성 Ag 농도가 감소한 것에 기인하는 것으로 판단되었다. Microtox 분석에 의한 Ag 나노용액의 생물학적 독성은 Ag의 존재형태 ($Ag^+$, $Ag^0$), 반응매질 (수용액, 토양), 노출시간에 따라 서로 상이한 결과를 보여 주었다.

Keywords

References

  1. AZUR Environmental. 1998. The Microtox acute basic, DIN, ISO and wet test procedure. Carlsbad, Calif, USA.
  2. Cho, G.Y. 2011. Chemicals management division. Ministry of Environment. Korea.
  3. Feng, Q.L., J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, and J.O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52:662-662. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  4. Haensch, M. and C. Emmerling. 2010. Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J. Plant Nutiri. Soil Sci. 173:554-558. https://doi.org/10.1002/jpln.200900358
  5. Jacobson, A.R., S. Klitzke, M.B. McBride, P. Baveye, and T.S. Steenhuis. 2005. The desorption of silver and thallium from soils in the presence of a chelating resin with thiol functional groups. Water Air Soil Poll. 160:41-54. https://doi.org/10.1007/s11270-005-3860-3
  6. Jovanovic, B., L. Anastasova, E.W. Rowe, Y. Zhang, A.R. Clapp, and D. Palic. 2011. Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf. 74(7):675-683. https://doi.org/10.1016/j.ecoenv.2010.10.017
  7. Lee, S.P. 2006. Ecotoxicological assessment of soils contaminated with heavy metals using soil enzymes and luminescent bacteria. Master-Thesis. Kangwon National University.
  8. Lee, J.N. and I.Y. Hwang. 1999. Evaluation of environmental toxicities for priority water pollutants in a small watershed by bioassays. Kor. J. Environ. Toxicol. 14:135-144.
  9. Lee, Y.S., H.S. Jeong, S.W. Kim, M.S. Yeo, H.S. Lim, E.J. Kim, and J.S. Min. 2005. Inhibition effect of nano-silver liquid against various plant microorganisms. J. Agri. Life Environ. Sci. 16:125-133.
  10. Liau, S.Y., D.C. Read, W.J. Pugh, J.R. Furr, and A.D. Russell. 1997. Interaction of silver-nitrate with readily identifiable groups; relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25:297-283.
  11. MOE. 2009a. Soil contamination standards methods. 2009.09. Ministry of Environment, Gwacheon. Korea.
  12. MOE. 2009b. Enforcement Decree of the Soil Environment Conservation Act. 12th. amended. No. 333. 2009.6.25. Ministry of Environment, Gwacheon. Korea.
  13. MOE. 2011. Soil monitoring network and survey of soil pollution status. Annual report 2010. Ministry of Environment, Gwacheon. Korea.
  14. Morones, R., J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramiyrez, and M.J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  15. Nam, J.J, S.J. Kim, and P.K. Park. 2006. Microtox biological toxic assessment of soils treated with sewage sludge. J. Korean Soc. Environ. Anal. 9(3):191-198.
  16. NIAST. 2000. Methods of soil and plant anlysis. National Institut of Agricultural Science and Technology, RDA, Suwon, Korea (In Korean).
  17. NIER. 2010. Study on hazardous properties of manufactured silver nanoparticles. National Institute of Environmental Research.
  18. Park, K. 2005. Toxicity of nanomaterials and strategy of risk assessment. K. Environ. Toxicol. 20(4):259-271.
  19. Park, Y.H. 2008. Impact of the nano-silver suspension on soil quality parameters. Master-Thesis. Kangwon National University.
  20. Salizzato, M., B. Pavoni, A.V. Ghirardini, and P.F. Ghetti. 1998. Sediment toxicity measured using Vibrio fischeri as related to the concentrations of organic (PCBs, PAHs) and inorganic (Metals, sulphur) pollutants. Chemosphere 36:2949-2968. https://doi.org/10.1016/S0045-6535(98)00001-0
  21. Slawson, R.M., H. Lee, and J.T. Trevors. 1990. Bacterial interactions with silver. Biol. Met. 3:151-154. https://doi.org/10.1007/BF01140573
  22. Sondi, I. and B.S. Sondi. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 275:177- 182. https://doi.org/10.1016/j.jcis.2004.02.012
  23. Throbaeck, I.N., M. Johansson, M. Rosenquist, M. Pell, M. Hansson, and S. Hallin. 2007. Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microb. Lett. 270:189-194. https://doi.org/10.1111/j.1574-6968.2007.00632.x
  24. Woodrow Wilson Database. 2011. Nanotechnology consumer product inventory. http: //www.nanotechproject.org/inventories/ consumer/analysis_draft/.

Cited by

  1. Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils vol.285, 2017, https://doi.org/10.1016/j.geoderma.2016.10.006
  2. Effect of Daphnia magna on Nanoparticle(ZnO, TiO2) Aggregates in Aqueous System vol.20, pp.5, 2014, https://doi.org/10.7837/kosomes.2014.20.5.468