DOI QR코드

DOI QR Code

Comparative Analysis of Endophytic Bacterial Communities in the Roots of Rice Grown under Long-term Fertilization Practice using Pyrosequencing Method

파이로시퀀싱을 이용한 비료 장기 연용지의 벼 뿌리 내생세균의 군집 분석

  • Kim, Byung-Yong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Myung-Sook (Soil & Fertilization Division, National Academy of Agricultural Science, RDA) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
  • 김병용 (국립농업과학원 농업미생물과) ;
  • 안재형 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 김명숙 (국립농업과학원 토양비료과) ;
  • 원항연 (국립농업과학원 농업미생물과)
  • Received : 2012.11.14
  • Accepted : 2012.12.07
  • Published : 2012.12.31

Abstract

Bacterial endophytes may be important factors in plant growth and ecologically relevant functions in rice. Using pyrosequencing technology, we analyzed the composition of endophytic bacterial communities that colonized the roots of rice cultivated in long-term fertilized (APK) and non-fertilized (NF) paddy soils. A total of 1,900 reads were obtained from 2 samples. All sequences were classified into 177 OTUs (APK sample) or 72 OTUs (NF sample) at a 97% similarity cut-off. Twenty-two OTUs were shared between the 2 samples, and these were also the most dominant OTUs in both samples. Proteobacteria was the most dominant phylum with 90.2%, followed by Actinobacteria (7.1%) and Bacteroidetes (1.1%). Furthermore, Pseudomonas was the most abundant genus in both samples. We observed clear differences in the structure of the endophytic bacterial community structure between the 2 samples. Notably, the distributions of Alphaproteobacteria and Gammaproteobacteria were markedly different. The diversity index of the APK sample was higher than that of the NF sample. These findings showed that the endophytic bacterial community of rice roots was affected by the presence of fertilizers in the rice field soil.

화학비료의 장기 시용이 벼 내생 세균 군집에 미치는 영향을 조사하기 위해서 국립농업과학원의 장기 비료 연용 포장에서 재배한 벼 뿌리의 내생균의 군집을 파이로시퀀싱 기법으로 분석하였다. 3요소구 (APK)와 무비구 (NF) 시료에서 직접 DNA를 추출하여 세균에 특이적인 barcode PCR을 수행한 후 454 파이로시퀀싱을 하였다. 두 시료 (3요소구, 무비구)에서 1,900개의 염기서열을 얻었으며, 각각 177개와 72개의 OTU로 분류하였다. 두 시료는 22개의 OTU를 공유하였으며, 이들 OTU는 두 시료에서 모두 우점하였다. 특히 Pseudomonas속에 속하는 OTU의 비율이 매우 높았다. 문 (phylum) 수준에서 우점하는 내생균은 두 시료 모두 Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Actinobacteria 등 이었다. 처리구별로 계산한 다양성 지수는 3요소구 시료에서 더 높았다. 본 연구를 통해 장기간 비료 시용은 식물체내 존재하는 내생균 군집 구조에 영향을 주며, 벼 뿌리의 내생 세균의 군집 다양성을 증가시키는 것을 알 수 있었다.

Keywords

References

  1. Ahn, J.H., J. Song, B.Y. Kim, M.S. Kim, J.H. Joa, and H.Y. Weon. 2012. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J. Microbiol. 50:754-765. https://doi.org/10.1007/s12275-012-2409-6
  2. Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32:1559-1570. https://doi.org/10.1007/s10529-010-0347-0
  3. Berg, G., A. Krechel, M. Ditz, R.A. Sikora, A. Ulrich, and J. Hallmann. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51:215-229. https://doi.org/10.1016/j.femsec.2004.08.006
  4. Chun, J., K.Y. Kim, J.H. Lee, and Y. Choi. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10:101. https://doi.org/10.1186/1471-2180-10-101
  5. Compant, S., C. Clement, and A. Sessitsch. 2010. Plant growthpromoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  6. Edgar, R.C., B.J. Haas, J.C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  7. Jones, R.T., M.S. Robeson, C.L. Lauber, M. Hamady, R. Knight, and N. Fierer. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3:442-453. https://doi.org/10.1038/ismej.2008.127
  8. Kim, J.H. and J.K. Lee. 2011. Identification and characterization of an endophytic strain of Streptomyces from rice roots (Orysa sativa L.). Kor. J. Microbiol. 47:375-380.
  9. Kim, M.S., Y.H. Kim, B.K. Hyun, J.E. Yang, Y.S. Zhang, H.B. Yun, Y.K. Sonn, Y.J. Lee, and S.K. Ha. 2011. Rice yield and changes of available silicate in paddy soils from long-term application of chemical fertilizers and soil amendments. Korean J. Soil Sci. Fert. 44:1118-1123. https://doi.org/10.7745/KJSSF.2011.44.6.1118
  10. Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won, and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62:716-721. https://doi.org/10.1099/ijs.0.038075-0
  11. Lian, J., Z. Wang, and S. Zhou. 2008. Response of endophytic bacterial communities in banana tissue culture plantlets to Fusarium wilt pathogen infection. J. Gen. Appl. Microbiol. 54:83-92. https://doi.org/10.2323/jgam.54.83
  12. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363-1371. https://doi.org/10.1093/nar/gkh293
  13. Manter, D.K., J.A. Delgado, D.G. Holm, and R.A. Stong. 2010. Pyrosequencing reveals a highly diverse and cultivarspecific bacterial endophyte community in potato roots. Microb. Ecol. 60:157-166. https://doi.org/10.1007/s00248-010-9658-x
  14. Mercado-Blanco, J. and P.A. Bakker. 2007. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek. 92:367-389. https://doi.org/10.1007/s10482-007-9167-1
  15. Park, M., H. Lee, S.G. Hong, and O.S. Kim. 2012. Endophytic bacterial diversity of antartic moss, Sanionia uncinata. Antarct. Sci. 4:1-4.
  16. Park, S.Y., S.H. Yang, S.K. Choi, J.G. Kim, and S.H. Park. 2007. Isolation and characterization of endophytic bacteria from rice root cultivated in Korea. Kor. J. Microbiol. Biotechnol. 35:1-10.
  17. Pruesse, E., C. Quast, K. Knittel, B.M. Fuchs, W. Ludwig, J. Peplies, and F.O. Glockner. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35:7188-7196. https://doi.org/10.1093/nar/gkm864
  18. Qin, S., J. Li, H.H. Chen, G.Z. Zhao, W.Y. Zhu, C.L. Jiang, L.H. Xu, and W.J. Li. 2009. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in xishuangbanna, China. Appl. Environ. Microbiol. 75:6176-6186. https://doi.org/10.1128/AEM.01034-09
  19. Quince, C., A. Lanzen, R.J. Davenport, and P.J. Turnbaugh. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 12:38. https://doi.org/10.1186/1471-2105-12-38
  20. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  21. Saravanakumar, D. and R. Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol. 102:1283-1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x
  22. Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber. 2009. Introducing mothur: open-source, platform-independent, communitysupported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541. https://doi.org/10.1128/AEM.01541-09
  23. Shin, D.S., M.S. Park, S. Jung, M.S. Lee, K.H. Lee, K.S. Bae, and S.B. Kim. 2007. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J. Microbiol. Biotechnol. 17:1361-1368.
  24. Stockwell, V.O. and J.P. Stack. 2007. Using Pseudomonas spp. for integrated biological control. Phytopathology. 97:244-249. https://doi.org/10.1094/PHYTO-97-2-0244
  25. Strobel, G., B. Daisy, U. Castillo, and J. Harper. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67:257-268. https://doi.org/10.1021/np030397v
  26. Taghavi, S., D. van der Lelie, A. Hoffman, Y.B. Zhang, M.D. Walla, J. Vangronsveld, L. Newman, and S. Monchy. 2010. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 6:e1000943. https://doi.org/10.1371/journal.pgen.1000943
  27. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  28. Ulrich, K., A. Ulrich, and D. Ewald. 2008. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol. Ecol. 63:169-180. https://doi.org/10.1111/j.1574-6941.2007.00419.x