DOI QR코드

DOI QR Code

Application of Amplicon Pyrosequencing in Soil Microbial Ecology

토양미생물 생태 연구를 위한 증폭 파이로시퀀싱 기법의 응용

  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Byung-Yong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Dae-Hoon (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
  • 안재형 (국립농업과학원 농업미생물과) ;
  • 김병용 (국립농업과학원 농업미생물과) ;
  • 김대훈 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 원항연 (국립농업과학원 농업미생물과)
  • Received : 2012.11.05
  • Accepted : 2012.11.23
  • Published : 2012.12.31

Abstract

Soil microbial communities are immensely diverse and complex with respect to species richness and community size. These communities play essential roles in agricultural soil because they are responsible for most of the nutrient cycles in the soil and influence the plant diversity and productivity. However, the majority of these microbes remain uncharacterized because of poor culturability. Next-generation sequencing techniques have revolutionized many areas of biology by providing cheaper and faster alternatives to Sanger sequencing. Among them, amplicon pyrosequencing is a powerful tool developed by 454 Life Sciences for assessing the diversity of complex microbial communities by sequencing PCR products or amplicons. This review summarizes the current opinions in amplicon sequencing of soil microbial communities, and provides practical guidance and advice on sequence quality control, aligning, clustering, OTU- and taxon-based analysis. The last section of this article includes a few representative studies conducted using amplicon pyrosequencing.

Keywords

References

  1. Acinas, S.G., R. Sarma-Rupavtarm, V. Klepac-Ceraj, and M.F. Polz. 2005. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol. 71:8966-8969. https://doi.org/10.1128/AEM.71.12.8966-8969.2005
  2. Acosta-Martínez, V., S. Dowd, Y. Sun, and V. Allen. 2008. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol. Biochem. 40:2762-2770. https://doi.org/10.1016/j.soilbio.2008.07.022
  3. Acosta-Martínez, V., S.E. Dowd, C.W. Bell, R. Lascano, J.D. Booker, T.M. Zobeck, and D.R. Upchurch. 2010a. Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil. Diversity. 2:910-931. https://doi.org/10.3390/d2060910
  4. Acosta-Martínez, V., S.E. Dowd, Y. Sun, D. Wester, and V. Allen. 2010b. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Appl. Soil Ecol. 45:13-25. https://doi.org/10.1016/j.apsoil.2010.01.005
  5. Ahn, J.H., J. Song, B.Y. Kim, M.S. Kim, J.H. Joa, and H.Y. Weon. 2012. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J. Microbiol. 50:754-765. https://doi.org/10.1007/s12275-012-2409-6
  6. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  7. Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
  8. Ashelford, K.E., N.A. Chuzhanova, J.C. Fry, A.J. Jones, and A.J. Weightman. 2005. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl. Environ. Microbiol. 71:7724-7736. https://doi.org/10.1128/AEM.71.12.7724-7736.2005
  9. Bartram, A.K., M.D.J. Lynch, J.C. Stearns, G. Moreno- Hagelsieb, and J.D. Neufeld. 2011. Generation of multimillionsequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77:3846-3852. https://doi.org/10.1128/AEM.02772-10
  10. Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and E.W. Sayers. 2011. GenBank. Nucleic Acids Res. 39:D32-D37. https://doi.org/10.1093/nar/gkq1079
  11. Caporaso, J.G., J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Tumbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7:335-336. https://doi.org/10.1038/nmeth.f.303
  12. Caporaso, J.G., C.L. Lauber, W.A. Walters, D. Berg- Lyons, J. Huntley, N. Fierer, S.M. Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J.A. Gilbert, G. Smith, and R. Knight. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6:1621-1624. https://doi.org/10.1038/ismej.2012.8
  13. Chenna, R., H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, D.G. Higgins, and J.D. Thompson. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31:3497-3500. https://doi.org/10.1093/nar/gkg500
  14. Cole, J.R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, and J.M. Tiedje. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141-D145. https://doi.org/10.1093/nar/gkn879
  15. Cui, J., H. Meng, M. Nie, X. Chen, Z. Li, N. Bu, B. Li, J. Chen, Z. Quan, and C. Fang. 2012. Bacterial succession during 500 years of soil development under agricultural use. Eco. Res. 27:793-807. https://doi.org/10.1007/s11284-012-0955-3
  16. DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069-5072. https://doi.org/10.1128/AEM.03006-05
  17. Dolfing, J., A. Vos, J. Bloem, P.A.I. Ehlert, N.B. Naumova, and P.J. Kuikman. 2004. Microbial diversity in archived soils. Science. 306:813-813.
  18. Edgar, R. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 5:113. https://doi.org/10.1186/1471-2105-5-113
  19. Edgar, R.C., B.J. Haas, J.C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  20. Eilers, K.G., C.L. Lauber, R. Knight, and N. Fierer. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42:896-903. https://doi.org/10.1016/j.soilbio.2010.02.003
  21. Garrity, G.M., T.G. Lilburn, J.R. Cole, S.H. Harrison, J. Euzeby, and B.J. Tindall. 2007. The taxonomic outline of Bacteria and Archaea. TOBA Release 7.7. 10.1601 /TOBA7.7. Michigan State University Board of Trustees, Michigan, USA.
  22. Gilles, A., E. Meglecz, N. Pech, S. Ferreira, T. Malausa, and J.F. Martin. 2011. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics. 12.
  23. Haas, B.J., D. Gevers, A.M. Earl, M. Feldgarden, D.V. Ward, G. Giannoukos, D. Ciulla, D. Tabbaa, S.K. Highlander, E. Sodergren, B. Methe, T.Z. DeSantis, T.H.M. Consortium, J.F. Petrosino, R. Knight, and B.W. Birren. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21:494-504. https://doi.org/10.1101/gr.112730.110
  24. Hamp, T.J., W.J. Jones, and A.A. Fodor. 2009. Effects of experimental choices and analysis noise on surveys of the "rare biosphere". Appl. Environ. Microbiol. 75:3263- 3270. https://doi.org/10.1128/AEM.01931-08
  25. Hongoh, Y., H. Yuzawa, M. Ohkuma, and T. Kudo. 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221:299-304. https://doi.org/10.1016/S0378-1097(03)00218-0
  26. Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 20:2317-2319. https://doi.org/10.1093/bioinformatics/bth226
  27. Huse, S.M., J.A. Huber, H.G. Morrison, M.L. Sogin, and D.M. Welch. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8:R143. https://doi.org/10.1186/gb-2007-8-7-r143
  28. Huse, S.M., L. Dethlefsen, J.A. Huber, D.M. Welch, D.A. Relman, and M.L. Sogin. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics. 4.
  29. Huse, S.M., D.M. Welch, H.G. Morrison, and M.L. Sogin. 2010. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12:1889-1898. https://doi.org/10.1111/j.1462-2920.2010.02193.x
  30. Ishii, K. and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755. https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  31. Klammer, S., C. Mondini, and H. Insam. 2005. Microbial community fingerprints of composts stored under different conditions. Annals of Microbiology. 55:299-305.
  32. Knight, R., J.G. Caporaso, C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, and N. Fierer. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108:4516-4522. https://doi.org/10.1073/pnas.1000080107
  33. Kolton, M., Y.M. Harel, Z. Pasternak, E.R. Graber, Y. Elad, and E. Cytryn. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl. Environ. Microbiol. 77:4924-4930. https://doi.org/10.1128/AEM.00148-11
  34. Kunin, V., A. Engelbrektson, H. Ochman, and P. Hugenholtz. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12:118-123. https://doi.org/10.1111/j.1462-2920.2009.02051.x
  35. Lauber, C.L., M. Hamady, R. Knight, and N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111-5120. https://doi.org/10.1128/AEM.00335-09
  36. Lauber, C.L., N. Zhou, J.I. Gordon, R. Knight, and N. Fierer. 2010. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307:80-86. https://doi.org/10.1111/j.1574-6968.2010.01965.x
  37. Li, W. and A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 22:1658-1659. https://doi.org/10.1093/bioinformatics/btl158
  38. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363-1371. https://doi.org/10.1093/nar/gkh293
  39. Peplies, J., R. Kottmann, W. Ludwig, and F.O. Glöckner. 2008. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst. Appl. Microbiol. 31:251-257. https://doi.org/10.1016/j.syapm.2008.08.003
  40. Polz, M.F. and C.M. Cavanaugh. 1998. Bias in templateto- product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730.
  41. Pruesse, E., J. Peplies, and F.O. Glockner. 2012. SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics.
  42. Qiu, X., L. Wu, H. Huang, P.E. McDonel, A.V. Palumbo, J.M. Tiedje, and J. Zhou. 2001. Evaluation of PCR- generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl. Environ. Microbiol. 67:880-887. https://doi.org/10.1128/AEM.67.2.880-887.2001
  43. Quince, C., A. Lanzen, R. Davenport, and P. Turnbaugh. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 12:38. https://doi.org/10.1186/1471-2105-12-38
  44. Ranjard, L., D.P.H. Lejon, C. Mougel, L. Schehrer, D. Merdinoglu, and R. Chaussod. 2003. Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ. Microbiol. 5:1111-1120. https://doi.org/10.1046/j.1462-2920.2003.00521.x
  45. Rochelle, P.A., B.A. Cragg, J.C. Fry, R.J. Parkes, and A.J. Weightman. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol. 15:215-225. https://doi.org/10.1111/j.1574-6941.1994.tb00245.x
  46. Rousk, J., E. Baath, P.C. Brookes, C.L. Lauber, C. Lozupone, J.G. Caporaso, R. Knight, and N. Fierer. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4:1340-1351. https://doi.org/10.1038/ismej.2010.58
  47. Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71:1501-1506. https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  48. Schloss, P.D. 2009. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE. 4:e8230. https://doi.org/10.1371/journal.pone.0008230
  49. Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber. 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537- 7541. https://doi.org/10.1128/AEM.01541-09
  50. Schloss, P.D. 2010. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput. Biol. 6:e1000844. https://doi.org/10.1371/journal.pcbi.1000844
  51. Schloss, P.D. and S.L. Westcott. 2011. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77:3219-3226. https://doi.org/10.1128/AEM.02810-10
  52. Scholz, M.B., C.-C. Lo, and P.S.G. Chain. 2012. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr. Opin. Biotech. 23:9-15. https://doi.org/10.1016/j.copbio.2011.11.013
  53. Stackebrandt, E. and B.M. Goebel. 1994. A place for DNA-DNA reassociation and 16S ribosomal-RNA sequenceanalysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849. https://doi.org/10.1099/00207713-44-4-846
  54. Sugiyama, A., J.M. Vivanco, S.S. Jayanty, and D.K. Manter. 2010. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis. 94:1329-1335. https://doi.org/10.1094/PDIS-02-10-0090
  55. Sun, Y., Y. Cai, L. Liu, F. Yu, M.L. Farrell, W. McKendree, and W. Farmerie. 2009. ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res. 37.
  56. Sun, Y., Y. Cai, S.M. Huse, R. Knight, W.G. Farmerie, X. Wang, and V. Mai. 2012. A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis. Brief. Bioinform. 13:107-121. https://doi.org/10.1093/bib/bbr009
  57. Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
  58. Torsvik, V., R. Sorheim, and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment communities - A review. J. Ind. Microbiol. 17:170-178. https://doi.org/10.1007/BF01574690
  59. Torsvik, V. and L. Ovreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240-245. https://doi.org/10.1016/S1369-5274(02)00324-7
  60. Tzeneva, V.A., J.F. Salles, N. Naumova, W.A. de Vos, P.J. Kuikman, J. Dolfing, and H. Smidt. 2009. Effect of soil sample preservation, compared to the effect of other environmental variables, on bacterial and eukaryotic diversity. Research in Microbiology. 160:89-98. https://doi.org/10.1016/j.resmic.2008.12.001
  61. van der Heijden, M.G., R.D. Bardgett, and N.M. van Straalen. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  62. von Wintzingerode, F., U.B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213-229. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  63. Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. https://doi.org/10.1128/AEM.00062-07
  64. Watanabe, K., Y. Kodama, and S. Harayama. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Meth. 44:253-262. https://doi.org/10.1016/S0167-7012(01)00220-2
  65. Wright, E.S., L.S. Yilmaz, and D.R. Noguera. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78:717-725. https://doi.org/10.1128/AEM.06516-11
  66. Wu, G.D., J.D. Lewis, C. Hoffmann, Y.Y. Chen, R. Knight, K. Bittinger, J. Hwang, J. Chen, R. Berkowsky, L. Nessel, H.Z. Li, and F.D. Bushman. 2010a. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 10:206. https://doi.org/10.1186/1471-2180-10-206
  67. Wu, J.Y., X.T. Jiang, Y.X. Jiang, S.Y. Lu, F. Zou, and H.W. Zhou. 2010b. Effects of polymerase, template dilution and cycle number on PCR based 16 S rRNA diversity analysis using the deep sequencing method. BMC Microbiol. 10:255. https://doi.org/10.1186/1471-2180-10-255
  68. Yoo, K., J. Lee, and J. Park. 2009. A review on the current methods for extracting DNA from soil and sediment environmental samples. J. Soil Groundwater Env. 14:57-67.
  69. Zhou, H.W., D.F. Li, N.F.Y. Tam, X.T. Jiang, H. Zhang, H.F. Sheng, J. Qin, X. Liu, and F. Zou. 2011. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5:741-749. https://doi.org/10.1038/ismej.2010.160