Convergence of weighted sums of linearly negative quadrant dependent random variables

선형 음의 사분 종속확률변수에서 가중합에 대한 수렴성 연구

  • Lee, Seung-Woo (School of mathematical Science and Institute of Basic Natural Science, Wonkwang University) ;
  • Baek, Jong-Il (School of mathematical Science and Institute of Basic Natural Science, Wonkwang University)
  • 이승우 (원광대학교 수학.정보통계학부) ;
  • 백종일 (원광대학교 수학.정보통계학부)
  • Received : 2012.09.03
  • Accepted : 2012.12.14
  • Published : 2012.12.25

Abstract

We in this paper discuss the strong law of large numbers for weighted sums of arrays of rowwise LNQD random variables by using a new exponential inequality of LNQD r.v.'s under suitable conditions and we obtain one of corollary.

Keywords

References

  1. Baek, J.I. et al(2009). On the strong law of large numbers for weighted sums id arrays of rowwise negatively dependent random variables. J.Korean Math.Soc. 4, No.4, 827-840.
  2. Cai, Z. & Roussas, G.G.(1997). Smooth estimate of quantiles under association. Stat. & Probab.Lett. 36, 275-287. https://doi.org/10.1016/S0167-7152(97)00074-6
  3. Hsu, P.L. & Robbins, H.(1947). Complete convergence and the law of large numbers. Proc. National. Acad. Sci. USA 33, 25-31. https://doi.org/10.1073/pnas.33.2.25
  4. Hu, T.C. et al(1989). Strong laws of large numbers for arrays of rowwise independent random variables. Acta. Math. Hung. 54(1-2), 153-162. https://doi.org/10.1007/BF01950716
  5. Joag-Dev, K. & Proschan, F.(1983). Negative association of random variables with applications. Ann. Statist. 11, 286-295. https://doi.org/10.1214/aos/1176346079
  6. Ko, M.H. et al(2007). Limiting behaviors of weighted sums for linearly negative quadrant dependent random variables. Taiwanese Journal of Mathematics. 11(2), 511-522. https://doi.org/10.11650/twjm/1500404705
  7. Lehmann, E.L.(1966). Some concepts of dependence. The Annals of Mathematical Statistics. 37, 1137-1153. https://doi.org/10.1214/aoms/1177699260
  8. Newman, C.M.(1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong(Ed.)., Statistics and probability. vol 5(pp. 127-140). Hayward, CA: Inst. Math. Statist.
  9. Wang, X. et al(2010). Exponential inequalities and complete convergence for a LNQD sequence. Jour. of the Kor. Stat. Soci. 39, 555-564. https://doi.org/10.1016/j.jkss.2010.01.002
  10. Wang, J. & Zhang, L.(2006). A Berry-Esseen theorem for weakly negatively dependent random variables and its applications. Acta Mathematica Hungarica. 110 (4), 293-308. https://doi.org/10.1007/s10474-006-0024-x