DOI QR코드

DOI QR Code

터널링 전계효과 트랜지스터의 불순물 분포 변동 효과

Random Dopant Fluctuation Effects of Tunneling Field-Effect Transistors (TFETs)

  • 투고 : 2012.07.23
  • 발행 : 2012.12.25

초록

3차원 시뮬레이션을 이용하여 터널링 전계효과 트랜지스터(TFET)의 불순물 분포 변동(RDF) 효과에 대해 살펴보았다. TFET의 RDF 효과는 매우 낮은 바디 도핑 농도 때문에 많이 논의되지 않았다. 하지만 본 논문에서는 임의로 생성되고 분포되는 소스 불순물이 TFET의 문턱전압 ($V_{th}$)과 드레인 유기 전류 증가 (DICE), 문턱전압이하 기울기 (SS)의 변화를 증가시킴을 발견하였다. 또한, TFET의 RDF 효과를 감소시킬 수 있는 몇 가지 방법을 제시하였다.

The random dopant fluctuation (RDF) effects of tunneling field-effect transistors (TFETs) have been observed by using atomistic 3-D device simulation. Due to extremely low body doping concentration, the RDF effects of TFETs have not been seriously investigated. However, in this paper, it has been found that the randomly generated and distributed source dopants increase the variation of threshold voltage ($V_{th}$), drain induced current enhancement (DICE) and subthreshold slope (SS) of TFETs. Also, some ways of relieving the RDF effects of TFETs have been presented.

키워드

참고문헌

  1. W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Lett., vol. 28, no. 8, pp. 743-745, Aug. 2007. https://doi.org/10.1109/LED.2007.901273
  2. V. Nagavarapu, R. Jhaveri, and J. C. S. Woo, "The tunnel source (PNPN) n-MOSFET: a novel high performance transistor," IEEE Trans. Electron Devices, vol. 55, no. 4, pp. 1013-1019, Apr. 2008. https://doi.org/10.1109/TED.2008.916711
  3. W. Y. Choi and W. Lee, "Hetero-gate-dielectric tunneling field-effect transistors," IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 2317-2319, Sep. 2010. https://doi.org/10.1109/TED.2010.2052167
  4. Q. Zhang, W. Zhao, and A. Seabaugh, "Low-subthreshold-swing tunnel transistors," IEEE Electron Device Lett., vol. 27, no. 4, pp. 297-300, Apr. 2006. https://doi.org/10.1109/LED.2006.871855
  5. K. K. Bhuwalka, J. Schulze, and I. Eisele, "Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering," IEEE Trans. Electron Devices, vol. 52, no. 5, pp. 909-917, May. 2005. https://doi.org/10.1109/TED.2005.846318
  6. N. Damrongplasit, C. Shin, S. H. Kim, R. A. Vega, and T.-J. K. Liu, "Study of Random Dopant Fluctuation Effects in Germanium-Source Tunnel FETs," IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3541-3548, Oct. 2011. https://doi.org/10.1109/TED.2011.2161990
  7. U. E. Avci, R. Rios, K. Kuhn, and I. A. Young, "Comparison of Performance, Switching Energy and Process Variations for the TFET and MOSFET in Logic," in Symp. on VLSI Tech., 2011, pp. 124-125.
  8. W. Y. Choi, J. Y. Song, J. D. Lee, Y. J. Park, and B. -G. Park, "A novel biasing scheme for I-MOS (impact-ionization MOS) devices," IEEE Trans. Nano tech., vol. 4, no. 3, pp. 322-325, May. 2005.
  9. Sentaurus Device User Guide Version : E-2010. 12, Synopsys, 2010.
  10. E. O. Kane, "Theory of tunneling," J. Appl. Phys., vol. 32, no. 1, pp. 83-91, Jan. 1961. https://doi.org/10.1063/1.1735965
  11. D. Vasileska, S. M. Goodnick, and G. Klimeck, Computational Electronics. Florida : CRC Press, 2010, ch. 6.
  12. A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, "Tunnel field-effect transistor without gate-drain overlap," Appl. Phys. Lett., vol. 91, no. 5, p. 053102, Jul. 2007. https://doi.org/10.1063/1.2757593
  13. T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, "Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and < 60mV/dec subthreshold slope," in IEDM Tech. Dig., 2008, pp. 947-949.
  14. E. O. Kane, "Zener tunneling in semiconductors," J. Phys. Chem. Solids, vol. 12, no. 2, pp. 181-188, Jan. 1960 https://doi.org/10.1016/0022-3697(60)90035-4