DOI QR코드

DOI QR Code

Chemical characteristics of mineral trioxide aggregate and its hydration reaction

  • Chang, Seok-Woo (Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2012.05.21
  • 심사 : 2012.08.28
  • 발행 : 2012.12.01

초록

Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed.

키워드

참고문헌

  1. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19:541-544.
  2. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995;21:349-353.
  3. Kim US, Shin SJ, Chang SW, Yoo HM, Oh TS, Park DS. In vitro evaluation of bacterial leakage resistance of an ultrasonically placed mineral trioxide aggregate orthograde apical plug in teeth with wide open apexes: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e52-56.
  4. Parirokh M, Asgary S, Eghbal MJ, Kakoei S, Samiee M. A comparative study of using a combination of calcium chloride and mineral trioxide aggregate as the pulpcapping agent on dogs' teeth. J Endod 2011;37:786-
  5. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review-part II: leakage and biocompatibility investigations. J Endod 2010;36:190-202.
  6. Bodrumlu E. Biocompatibility of retrograde root filling materials: a review. Aust Endod J 2008;34:30-35.
  7. Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemical differences between white and gray mineral trioxide aggregate. J Endod 2005;31:101-103.
  8. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 2007;40:462-470.
  9. Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTAAngelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:809-815.
  10. Belio-Reyes IA, Bucio L, Cruz-Chavez E. Phase composition of ProRoot mineral trioxide aggregate by X-ray powder diffraction. J Endod 2009;35:875-878.
  11. Asgary S, Parirokh M, Eghbal MJ, Brink F. A comparative study of white mineral trioxide aggregate and white Portland cements using X-ray microanalysis. Aust Endod J 2004;30:89-92.
  12. Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J 2012;45:737-743.
  13. Liu WN, Chang J, Zhu YQ, Zhang M. Effect of tricalcium aluminate on the properties of tricalcium silicatetricalcium aluminate mixtures: setting time, mechanical strength and biocompatibility. Int Endod J 2011;44:41-50.
  14. Hwang YC, Lee SH, Hwang IN, Kang IC, Kim MS, Kim SH, Son HH, Oh WM. Chemical composition, radiopacity, and biocompatibility of Portland cement with bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e96-102.
  15. Dammaschke T, Gerth HU, Züchner H, Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005;21:731-738.
  16. Chang SW, Bae KS. Analysis of chemical constitutions of MTA and 3 Portland cements. J Dent Rehab App Sci 2007;23:79-84.
  17. Chang SW, Yoo HM, Park DS, Oh TS, Bae KS. Ingredients and cytotoxicity of MTA and 3 kinds of Portland cements. J Korean Acad Conserv Dent 2008;33:369-376.
  18. Monteiro Bramante C, Demarchi AC, de Moraes IG, Bernadineli N, Garcia RB, Spangberg LS, Duarte MA. Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:909-913.
  19. Chang SW, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS. Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:642-646.
  20. Bodanezi A, Carvalho N, Silva D, Bernardineli N, Bramante CM, Garcia RB, de Moraes IG. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement. J Appl Oral Sci 2008;16:127-131.
  21. Chang SW, Baek SH, Yang HC, Seo DG, Hong ST, Han SH, Lee Y, Gu Y, Kwon HB, Lee W, Bae KS, Kum KY. Heavy metal analysis of ortho MTA and ProRoot MTA. J Endod 2011;37:1673-1676.
  22. Schembri M, Peplow G, Camilleri J. Analyses of heavy metals in mineral trioxide aggregate and Portland cement. J Endod 2010;36:1210-1215.
  23. Matsunaga T, Tsujimoto M, Kawashima T, Tsujimoto Y, Fujiwara M, Ookubo A, Hayashi Y. Analysis of arsenic in gray and white mineral trioxide aggregates by using atomic absorption spectrometry. J Endod 2010;36:1988- 1990.
  24. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater 2011;27:836-844.
  25. Camilleri J. Hydration characteristics of calcium silicate cements with alternative radiopacifiers used as rootend filling materials. J Endod 2010;36:502-508.
  26. Camilleri J. The chemical composition of mineral trioxide aggregate. J Conserv Dent 2008;11:141-143.
  27. Formosa LM, Mallia B, Bull T, Camilleri J. The microstructure and surface morphology of radiopaque tricalcium silicate cement exposed to different curing conditions. Dent Mater 2012;28:584-595.
  28. Camilleri J, Cutajar A, Mallia B. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material. Dent Mater 2011;27:845-854.
  29. Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J 2008;41:408-417.
  30. Camilleri J. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry. Int Endod J 2008;41:791-799.
  31. Tay FR, Pashley DH, Rueggeberg FA, Loushine RJ, Weller RN. Calcium phosphate phase transformation produced by the interaction of the portland cement component of white mineral trioxide aggregate with a phosphatecontaining fluid. J Endod 2007;33:1347-1351.
  32. Bozeman TB, Lemon RR, Eleazer PD. Elemental analysis of crystal precipitate from gray and white MTA. J Endod 2006;32:425-428.
  33. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31:97-100.
  34. Saghiri MA, Lotfi M, Saghiri AM, Vosoughhosseini S, Aeinehchi M, Ranjkesh B. Scanning electron micrograph and surface hardness of mineral trioxide aggregate in the presence of alkaline pH. J Endod 2009;35:706-710.
  35. Lee YL, Lee BS, Lin FH, Yun Lin A, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004;25:787-793.
  36. Kayahan MB, Nekoofar MH, Kazandağ M, Canpolat C, Malkondu O, Kaptan F, Dummer PM. Effect of acidetching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J 2009;42:1004- 1014.
  37. Hachmeister DR, Schindler WG, Walker WA 3rd, Thomas DD. The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification. J Endod 2002;28:386-390.
  38. Stefopoulos S, Tsatsas DV, Kerezoudis NP, Eliades G. Comparative in vitro study of the sealing efficiency of white vs grey ProRoot mineral trioxide aggregate formulas as apical barriers. Dent Traumatol 2008;24:207-213.
  39. Bird DC, Komabayashi T, Guo L, Opperman LA, Spears R. In vitro evaluation of dentinal tubule penetration and biomineralization ability of a new root-end filling material. J Endod 2012;38:1093-1096.
  40. Dreger LA, Felippe WT, Reyes-Carmona JF, Felippe GS, Bortoluzzi EA, Felippe MC. Mineral trioxide aggregate and Portland cement promote biomineralization in vivo. J Endod 2012;38:324-329.
  41. Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod 2009;35:731-736.
  42. Reyes-Carmona JF, Felippe MS, Felippe WT. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod 2010;36:286-291.
  43. Han L, Okiji T, Okawa S. Morphological and chemical analysis of different precipitates on mineral trioxide aggregate immersed in different fluids. Dent Mater J 2010;29:512-517.
  44. Khor KA, Li H, Cheang P, Boey SY. In vitro behavior of HVOF sprayed calcium phosphate splats and coatings. Biomaterials 2003;24:723-735.
  45. Weng J, Liu Q, Wolke JG, Zhang X, de Groot K. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials 1997;18:1027-1035.
  46. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011;44:1081-1087.
  47. Camilleri J. Scanning electron microscopic evaluation of the material interface of adjacent layers of dental materials. Dent Mater 2011;27:870-878.
  48. Tingey MC, Bush P, Levine MS. Analysis of mineral trioxide aggregate surface when set in the presence of fetal bovine serum. J Endod 2008;34:45-49.
  49. Nekoofar MH, Stone DF, Dummer PM. The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int Endod J 2010;43:782-791.
  50. Kim Y, Kim S, Shin YS, Jung IY, Lee SJ. Failure of setting of mineral trioxide aggregate in the presence of fetal bovine serum and its prevention. J Endod 2012;38:536-540.

피인용 문헌

  1. In vivo evaluation of the effects of hydraulic calcium silicate dental cements on plasma and liver aluminium levels in rats vol.124, pp.1, 2015, https://doi.org/10.1111/eos.12238
  2. A review of the physical, chemical properties of MTA vol.42, pp.1, 2015, https://doi.org/10.14815/kjdm.2015.42.1.51
  3. Superfast Set, Strong and Less Degradable Mineral Trioxide Aggregate Cement vol.2017, pp.1687-8736, 2017, https://doi.org/10.1155/2017/3019136
  4. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests vol.25, pp.4, 2017, https://doi.org/10.1590/1678-7757-2016-0454
  5. Is stopping of anticoagulant therapy really required in a minor dental surgery? - How about in an endodontic microsurgery? vol.38, pp.3, 2013, https://doi.org/10.5395/rde.2013.38.3.113
  6. Evaluation of the effect of blood contamination on the compressive strength of MTA modified with hydration accelerators vol.38, pp.3, 2013, https://doi.org/10.5395/rde.2013.38.3.128
  7. A preliminary report on histological outcome of pulpotomy with endodontic biomaterials vs calcium hydroxide vol.38, pp.4, 2013, https://doi.org/10.5395/rde.2013.38.4.227
  8. Washout resistance of fast-setting pozzolan cement under various root canal irrigants vol.38, pp.4, 2013, https://doi.org/10.5395/rde.2013.38.4.248
  9. Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report vol.38, pp.4, 2013, https://doi.org/10.5395/rde.2013.38.4.258
  10. Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials vol.39, pp.2, 2014, https://doi.org/10.5395/rde.2014.39.2.89
  11. Biodentine-a novel dentinal substitute for single visit apexification vol.39, pp.2, 2014, https://doi.org/10.5395/rde.2014.39.2.120
  12. Comparative analysis of physicochemical properties of root perforation sealer materials vol.39, pp.3, 2014, https://doi.org/10.5395/rde.2014.39.3.201
  13. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions vol.39, pp.4, 2014, https://doi.org/10.5395/rde.2014.39.4.253
  14. Effect of acidic solutions on the microhardness of dentin and set OrthoMTA and their cytotoxicity on murine macrophage vol.41, pp.1, 2016, https://doi.org/10.5395/rde.2016.41.1.12
  15. Effects of the exposure site on histological pulpal responses after direct capping with 2 calcium-silicate based cements in a rat model vol.43, pp.2234-7666, 2018, https://doi.org/10.5395/rde.2018.43.e36
  16. Tooth Discoloration after the Use of New Pozzolan Cement (Endocem) and Mineral Trioxide Aggregate and the Effects of Internal Bleaching vol.39, pp.12, 2012, https://doi.org/10.1016/j.joen.2013.08.035
  17. Study on Biocompatibility and Mineralization Potential of Capseal vol.7, pp.1, 2012, https://doi.org/10.5856/jkds.2014.7.1.1
  18. Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review vol.14, pp.1, 2012, https://doi.org/10.5005/jp-journals-10005-1880
  19. A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials vol.46, pp.1, 2021, https://doi.org/10.5395/rde.2021.46.e2