References
- Y. J. Lee, S. Y. Park, J. G. Seo, J. R. Yoon, J. H. Yi, I. K. Song, Curr. App. Phys. vol. 11, pp. 631-635, 2011. https://doi.org/10.1016/j.cap.2010.10.016
- Y. F. Tang, L. Yang, Z. Qiu, J. S. Huang, Electrochem. Commun. Vol. 10, pp. 1513-1516, 2008. https://doi.org/10.1016/j.elecom.2008.07.049
- T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. vol. 142, pp. 1431-1435, 1995. https://doi.org/10.1149/1.2048592
- K. Zaghib, M. Armand, M. Gauthier, J. Electrochem. Soc. vol. 145, pp. 3135, 1998. https://doi.org/10.1149/1.1838776
- K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources, vol. 81-82, pp. 300-305, 1999. https://doi.org/10.1016/S0378-7753(99)00209-8
- M. Venkateswarlu, C. H. Chen, J. S. Do, C. W. Lin, T. C. Chou, B. J. Hwang, J. Power Sources, vol. 146, pp. 204-208, 2005. https://doi.org/10.1016/j.jpowsour.2005.03.016
- J. Gao, C. Y. Jiang, J. R. Ying, C. R. Wan, J. Power Sources, vol. 155, pp. 364-367, 2006. https://doi.org/10.1016/j.jpowsour.2005.04.008
- Y. J. Hao, Q. Y. Lai, J. Z. Lu, H. L. Wang, Y. D. Chen, X. Y. Ji, J. Power Sources, vol. 158, pp. 1358-1364, 2006. https://doi.org/10.1016/j.jpowsour.2005.09.063
- J. R. Li, Z. L. Tang, Z. T. Zhang, Electrochem. Commun. Vol. 7, pp, 894, 2005. https://doi.org/10.1016/j.elecom.2005.06.012
- D. Takayuki, I. Yasutoshi, A. Takeshi, O. Zempachi, Chem. Mater. vol. 17, pp. 1580-1582, 2005. https://doi.org/10.1021/cm047848x
- Y. Bai, F. Wang, F. Wu, C. Wu, L. Y. Bao, Electrochim. Acta, vol. 54, pp. 322-327, 2008. https://doi.org/10.1016/j.electacta.2008.07.076
- J. Li, Y. L. Jin, X. G. Zhang, H. Yang, Solid State Ionics, vol. 178, pp. 1590-1594, 2007. https://doi.org/10.1016/j.ssi.2007.10.012
- K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources, vol. 81-82, pp 300-305, 1999. https://doi.org/10.1016/S0378-7753(99)00209-8
- M. S. Hong, S. H. Lee, S. W. Kim, Electrochem. Solid St. vol. 5, pp. A227-A230, 2002. https://doi.org/10.1149/1.1506463
- E. M. Sorensen, S. J. Barry, H. K. Jung, J. R. Rondinelli, J. T. Vaughey, K. R. Poeppelmeier, Chem. Mater. Vol. 18, pp. 482-489, 2006. https://doi.org/10.1021/cm052203y
- S. Y. Yina, L. Songb, X. Y. Wanga, M. F. Zhanga, K. L. Zhanga,c, Y. X. Zhanga, Electrochimica Acta, vol. 54, pp. 5629-5633, 2009. https://doi.org/10.1016/j.electacta.2009.04.067
- J. R. Yoon, K. M. Lee, and S. W. Lee, Trans. EEM 10 (1) 5, pp. 5-8, 2009.
Cited by
- MoS2 Being Used as Negative Electrode for Asymmetric Electrochemical Capacitors vol.28, pp.8, 2013, https://doi.org/10.3724/SP.J.1077.2013.12630
- Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance vol.253, 2014, https://doi.org/10.1016/j.jpowsour.2013.11.097
- Novel performance of ultrathin AlPO4 coated H2Ti12O25 Exceeding Li4Ti5O12 in cylindrical hybrid supercapacitor vol.273, 2015, https://doi.org/10.1016/j.jpowsour.2014.09.090
- The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor vol.10, pp.3, 2015, https://doi.org/10.5370/JEET.2015.10.3.1102
- Synthesis, Structure and Electronic Properties of Li4Ti5O12 Anode Material for Lithium Ion Batteries vol.271, 2018, https://doi.org/10.4028/www.scientific.net/SSP.271.9
- The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization vol.65, pp.4, 2016, https://doi.org/10.5370/KIEE.2016.65.4.617
- Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure vol.266, 2014, https://doi.org/10.1016/j.powtec.2014.06.056
- A novel high-performance cylindrical hybrid supercapacitor with Li 4−x Na x Ti 5 O 12 /activated carbon electrodes vol.39, pp.29, 2014, https://doi.org/10.1016/j.ijhydene.2014.05.072
- The Operation Characteristics of Hybrid Supercapacitor Module for LED Emergency Luminaires vol.28, pp.7, 2015, https://doi.org/10.4313/JKEM.2015.28.7.473
- Preparation and characterization of Li4Ti5O12 synthesized using hydrogen titanate nanowire for hybrid super capacitor vol.2, pp.3, 2013, https://doi.org/10.1007/s40145-013-0073-x
- Fabrication and electrochemical properties of cylindrical hybrid supercapacitor using H2Ti12O25 as anode material vol.143, 2015, https://doi.org/10.1016/j.matlet.2014.12.069
- Improved electrochemical performance of Li4Ti5O12 by reducing rutile TiO2 phase impurity and particle size vol.32, pp.3, 2017, https://doi.org/10.1080/10667857.2016.1214663
- Effects of the Sintering Temperature on the Properties of Ce0.85Gd0.1Ca0.05O2- δ Electrolyte Materials for SOFC vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741453
- Electrodes Using a Graphene-Polyvinylidene Fluoride Conductive Composite Binder vol.161, pp.4, 2014, https://doi.org/10.1149/2.035404jes