DOI QR코드

DOI QR Code

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Received : 2010.12.21
  • Accepted : 2011.06.13
  • Published : 2012.03.01

Abstract

Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

Keywords

References

  1. Y. J. Lee, S. Y. Park, J. G. Seo, J. R. Yoon, J. H. Yi, I. K. Song, Curr. App. Phys. vol. 11, pp. 631-635, 2011. https://doi.org/10.1016/j.cap.2010.10.016
  2. Y. F. Tang, L. Yang, Z. Qiu, J. S. Huang, Electrochem. Commun. Vol. 10, pp. 1513-1516, 2008. https://doi.org/10.1016/j.elecom.2008.07.049
  3. T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. vol. 142, pp. 1431-1435, 1995. https://doi.org/10.1149/1.2048592
  4. K. Zaghib, M. Armand, M. Gauthier, J. Electrochem. Soc. vol. 145, pp. 3135, 1998. https://doi.org/10.1149/1.1838776
  5. K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources, vol. 81-82, pp. 300-305, 1999. https://doi.org/10.1016/S0378-7753(99)00209-8
  6. M. Venkateswarlu, C. H. Chen, J. S. Do, C. W. Lin, T. C. Chou, B. J. Hwang, J. Power Sources, vol. 146, pp. 204-208, 2005. https://doi.org/10.1016/j.jpowsour.2005.03.016
  7. J. Gao, C. Y. Jiang, J. R. Ying, C. R. Wan, J. Power Sources, vol. 155, pp. 364-367, 2006. https://doi.org/10.1016/j.jpowsour.2005.04.008
  8. Y. J. Hao, Q. Y. Lai, J. Z. Lu, H. L. Wang, Y. D. Chen, X. Y. Ji, J. Power Sources, vol. 158, pp. 1358-1364, 2006. https://doi.org/10.1016/j.jpowsour.2005.09.063
  9. J. R. Li, Z. L. Tang, Z. T. Zhang, Electrochem. Commun. Vol. 7, pp, 894, 2005. https://doi.org/10.1016/j.elecom.2005.06.012
  10. D. Takayuki, I. Yasutoshi, A. Takeshi, O. Zempachi, Chem. Mater. vol. 17, pp. 1580-1582, 2005. https://doi.org/10.1021/cm047848x
  11. Y. Bai, F. Wang, F. Wu, C. Wu, L. Y. Bao, Electrochim. Acta, vol. 54, pp. 322-327, 2008. https://doi.org/10.1016/j.electacta.2008.07.076
  12. J. Li, Y. L. Jin, X. G. Zhang, H. Yang, Solid State Ionics, vol. 178, pp. 1590-1594, 2007. https://doi.org/10.1016/j.ssi.2007.10.012
  13. K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources, vol. 81-82, pp 300-305, 1999. https://doi.org/10.1016/S0378-7753(99)00209-8
  14. M. S. Hong, S. H. Lee, S. W. Kim, Electrochem. Solid St. vol. 5, pp. A227-A230, 2002. https://doi.org/10.1149/1.1506463
  15. E. M. Sorensen, S. J. Barry, H. K. Jung, J. R. Rondinelli, J. T. Vaughey, K. R. Poeppelmeier, Chem. Mater. Vol. 18, pp. 482-489, 2006. https://doi.org/10.1021/cm052203y
  16. S. Y. Yina, L. Songb, X. Y. Wanga, M. F. Zhanga, K. L. Zhanga,c, Y. X. Zhanga, Electrochimica Acta, vol. 54, pp. 5629-5633, 2009. https://doi.org/10.1016/j.electacta.2009.04.067
  17. J. R. Yoon, K. M. Lee, and S. W. Lee, Trans. EEM 10 (1) 5, pp. 5-8, 2009.

Cited by

  1. MoS2 Being Used as Negative Electrode for Asymmetric Electrochemical Capacitors vol.28, pp.8, 2013, https://doi.org/10.3724/SP.J.1077.2013.12630
  2. Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance vol.253, 2014, https://doi.org/10.1016/j.jpowsour.2013.11.097
  3. Novel performance of ultrathin AlPO4 coated H2Ti12O25 Exceeding Li4Ti5O12 in cylindrical hybrid supercapacitor vol.273, 2015, https://doi.org/10.1016/j.jpowsour.2014.09.090
  4. The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor vol.10, pp.3, 2015, https://doi.org/10.5370/JEET.2015.10.3.1102
  5. Synthesis, Structure and Electronic Properties of Li4Ti5O12 Anode Material for Lithium Ion Batteries vol.271, 2018, https://doi.org/10.4028/www.scientific.net/SSP.271.9
  6. The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization vol.65, pp.4, 2016, https://doi.org/10.5370/KIEE.2016.65.4.617
  7. Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure vol.266, 2014, https://doi.org/10.1016/j.powtec.2014.06.056
  8. A novel high-performance cylindrical hybrid supercapacitor with Li 4−x Na x Ti 5 O 12 /activated carbon electrodes vol.39, pp.29, 2014, https://doi.org/10.1016/j.ijhydene.2014.05.072
  9. The Operation Characteristics of Hybrid Supercapacitor Module for LED Emergency Luminaires vol.28, pp.7, 2015, https://doi.org/10.4313/JKEM.2015.28.7.473
  10. Preparation and characterization of Li4Ti5O12 synthesized using hydrogen titanate nanowire for hybrid super capacitor vol.2, pp.3, 2013, https://doi.org/10.1007/s40145-013-0073-x
  11. Fabrication and electrochemical properties of cylindrical hybrid supercapacitor using H2Ti12O25 as anode material vol.143, 2015, https://doi.org/10.1016/j.matlet.2014.12.069
  12. Improved electrochemical performance of Li4Ti5O12 by reducing rutile TiO2 phase impurity and particle size vol.32, pp.3, 2017, https://doi.org/10.1080/10667857.2016.1214663
  13. Effects of the Sintering Temperature on the Properties of Ce0.85Gd0.1Ca0.05O2- δ Electrolyte Materials for SOFC vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741453
  14. Electrodes Using a Graphene-Polyvinylidene Fluoride Conductive Composite Binder vol.161, pp.4, 2014, https://doi.org/10.1149/2.035404jes