DOI QR코드

DOI QR Code

Development of Automated Tools for Data Quality Diagnostics

데이터 품질진단을 위한 자동화도구 개발

  • 고재환 ((주)키삭) ;
  • 김동수 (건국대학교 정보통신대학원 정보통신학과) ;
  • 한기준 (건국대학교 컴퓨터공학부)
  • Received : 2012.01.26
  • Accepted : 2012.10.06
  • Published : 2012.12.31

Abstract

When companies or institutes manage data, in order to utilize it as useful resources for decision-making, it is essential to offer precise and reliable data. While most small and medium-sized enterprises and public institutes have been investing a great amount of money in management and maintenance of their data systems, the investment in data management has been inadequate. When public institutions establish their data systems, inspection has been constantly carried out on the data systems in order to improve safety and effectiveness. However, their capabilities in improving the quality of data have been insufficient. This study develops an automatic tool to diagnose the quality of data in a way to diagnose the data quality condition of the inspected institute quantitatively at the stage of design and closure by inspecting the data system and proves its practicality by applying the automatic tool to inspection. As a means to diagnose the quality, this study categorizes, in the aspect of quality characteristics, the items that may be improved through diagnosis at the stage of design, the early stage of establishing the data system and the measurement items by the quality index regarding measurable data values at the stage of establishment and operation. The study presents a way of quantitative measurement regarding the data structures and data values by concretizing the measurement items by quality index in a function of the automatic tool program. Also, the practicality of the tool is proved by applying the tool in the inspection field. As a result, the areas which the institute should improve are reported objectively through a complete enumeration survey on the diagnosed items and the indicators for quality improvement are presented quantitatively by presenting the quality condition quantitatively.

Keywords

References

  1. 곽송해, 감리생산성 향상을 위한 자동화도구 활용 연구, 2009.
  2. 김문영, 체계적인 데이터 품질 관리를 위한 대안을 찾아서, 디지털콘텐츠, 2005.
  3. 김수경, 데이터 품질 메트릭스 설정 연구, 2001.
  4. 박주석, 진정한 데이터 품질 관리의 조건, 2009.
  5. 이병태, 양해술, 산업용 소프트웨어의 평가 기준 및 모듈의 구축, 2008.
  6. 이형로, 이유진 등, 차세대 데이터 품질, 투이컨설팅, 2009.
  7. 정혜정, "데이터 품질 평가에 관한 연구, 한국 인터넷정보학회, 제8권, 제4호(2007), p.120.
  8. 한국데이터베이스진흥원, 데이터아키텍처 전문가 가이드, 2010.
  9. 한국데이터베이스진흥원, 데이터 품질 관리성숙모형 V1.0, 한국데이터베이스진흥원, 2006.
  10. 한국데이터베이스진흥원, 데이터 품질진단절차 및 기법 V1.0, 2009.
  11. 한국전산원, 감리 자동화 방안 연구, 2000.
  12. Lee, Y. W., 데이터 품질로의 여행, 서울경제경영, 2008.
  13. ISO/IEC, 25012 Software engineering, 2006.