DOI QR코드

DOI QR Code

Optimal Design of Deep-Sea Pressure Hulls using CAE tools

CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구

  • Jeong, Han Koo (Department of Naval Architecture, Kunsan National University) ;
  • Henry, Panganiban (School of Mechanical and Automotive Engineering, Kunsan National University)
  • Received : 2012.11.05
  • Accepted : 2012.12.18
  • Published : 2012.12.31

Abstract

Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.

내압구조물의 구조적 성능에 영향을 주는 주요 요소로 형상, 쉘 두께, 보강재 배치 안 그리고 제작 재료 등을 나열할 수 있다. 전통적인 이론적 방법론에 근거한 내압구조물의 설계는 신속하며 만족할 만한 결과를 제공하지만 이는 일부 특정한 형상, 쉘 두께 및 제작 재료 등에 제한되어 있다. 본 논문에서는 최적화된 형상, 쉘 두께, 보강재 배치 안 그리고 복합재료 적층 정보 등을 얻을 수 있는 최적설계 기법에 근거한 진보된 대체 방법론을 다루고 있다. CAE 기반의 최적설계 기법을 활용하여 내압구조물 설계에 요구되는 구조적 성능과 최적화된 설계 인자들을 얻었다. 상용화된 유한요소 프로그램임 ANSYS의 CAE 플랫폼으로부터 메타모델 기반 최적화 기법을 수행하여 원통형 내압구조물의 설계를 위한 최적의 타원형 형상을 결정하였다. 또한 최적설계 프로그램인 OptiStruct의 기울기 기반 최적설계 방법을 이용하여 복합재료 기반 내압구조물의 설계시 최적의 적층순서와 쉘 두께가 얇은 내압구조물에 대한 최적의 보강재 배치 안을 각각 도출하였다. 최적설계 예제를 통해 본 논문에서 제시하고 있는 최적설계 기법에 근거한 방법론이 내압구조물의 설계에 효과적임을 확인할 수 있었다.

Keywords

References

  1. ANSYS Academic Research, Release 12.1.
  2. Bagheri, M., Jafari, A., Sadeghifar, M. (2011) Multi-Objective Optimization of Ring Stiffened Cylindrical Shells using a Genetic Algorithm, Journal of Sound and Vibration, 330, pp.374-384. https://doi.org/10.1016/j.jsv.2010.08.019
  3. Barski, M., Kruzelecki, J. (2005) Optimal Design of Shells Against Buckling under Overall Bending and External Pressure, Thin-Walled Structures, 43, pp.1677-1698. https://doi.org/10.1016/j.tws.2005.08.003
  4. Blachut, J. (2003) Optimal Barreling of Steel Shells Via Simulated Annealing Algorithm, Computers and Structures, 81, pp.1941-1956. https://doi.org/10.1016/S0045-7949(03)00214-1
  5. Cagdas, I., Adali, S. (2011) Buckling of Cross-Ply Cylinders under Hydrostatic Pressure Considering Pressure Stiffness, Ocean Engineering, 38, pp.559 -569. https://doi.org/10.1016/j.oceaneng.2010.12.005
  6. Cai, B., Liu, Y., Liu, Z., Tian, X., Ji, R., Li, H. (2011) Reliability-Based Load and Resistance Factor Design of Composite Pressure Vessel under External Hydrostatic Pressure, Composite Structures, 93, pp.2844-2852. https://doi.org/10.1016/j.compstruct.2011.05.020
  7. Cartie, D., Davies, P., Peleau, M., Partridge, I. (2006) The Influence of Hydrostatic Pressure on the Interlaminar Fracture Toughness of Carbon/ Epoxy Composites, Composites: Part B, pp.292- 300. https://doi.org/10.1016/j.compositesb.2005.12.002
  8. Jang, G.W., Yoon, M.S., Park, J.H. (2010) Lightweight Flatbed Trailer Design by using Topology and Thickness Optimization, Structural and Multidisciplinary Optimization, 41, pp.295-307. https://doi.org/10.1007/s00158-009-0409-x
  9. Jasion, P., Magnucki, K. (2007) Elastic Buckling of Barrelled Shell under External Pressure, Thin- Walled Structures, 45, pp.393-399. https://doi.org/10.1016/j.tws.2007.04.001
  10. Jeong, H.K. (2010) Comparative Study of Metallic and Non-Metallic Stiffened Plates in Marine Structures, Journal of the Computational Structural Engineering, 23, pp.715 -726.
  11. Joung, T.-H., Lee, J.-H., Nho, I.-S., Lee, C.-M., Lee, P.-M., Aoki, T., Hyakudome, T. (2008) A Study on the Pressure Vessel Design, Structural Analysis and Pressure Test of a 6000m Depth- Rated Unmanned Underwater Vehicle, Ships and Offshore Structures, 3, pp.205-214. https://doi.org/10.1080/17445300802204371
  12. Kim, M.G., Kim, J.H., Cho, S. (2010) Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method, Journal of the Computational Structural Engineering, 23, pp.683-691.
  13. Lee, G., Park, J., Choi, D.-H. (2012) Shape Optimization of Mobile Phone Folder Module for Structural Strength, Journal of Mechanical Science and Technology, 26, pp.509-515. https://doi.org/10.1007/s12206-011-1212-3
  14. Loeppky, J.L., Sacks, J., Welch, W.J. (2009) Choosing the Sample Size of a Computer Experiment: A Practical Guide, Technometrics, 51, pp.366-376. https://doi.org/10.1198/TECH.2009.08040
  15. Moon, C., Kim, I., Choi, B., Kweon, J., Choi, J. (2010) Buckling of Filament-Wound Composite Cylinders Subjected to Hydrostatic Pressure for Underwater Vehicle Applications, Composite Structures, 92, pp.2241-2251. https://doi.org/10.1016/j.compstruct.2009.08.005
  16. Nexcoms Co., Ltd. (2012) Material Property Testing of a Group of CFRP Laminates.
  17. OptiStruct. Altair HyperWorks, Version 11.0.
  18. Simpson, T.W., Mauery, T.M., Korte, J.J., Mistree, F. (2001) Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization, AIAA Journal, 39, pp.2233- 2241. https://doi.org/10.2514/2.1234
  19. Young, W.C., Budynas, R.G. (2002) Roark's Formulas for Stress and Strain, Seventh ed, McGraw-Hill, New York.
  20. Zhou, M. (2004) Topology Optimization for Shell Structures with Linear Buckling Responses, Computational Mechanics, WCCM VI, Tsinghua University Press & Springer Verlag, Beijing, China.

Cited by

  1. Shape Optimization of a Hole for Water Jetting in a Spudcan for a Jack-up Rig vol.40, pp.4, 2016, https://doi.org/10.3795/KSME-A.2016.40.4.337