DOI QR코드

DOI QR Code

Dangerous Border-collision Bifurcation for a Piecewise Smooth Nonlinear System

  • Received : 2012.08.14
  • Accepted : 2012.09.04
  • Published : 2012.12.23

Abstract

A piecewise smooth system is characterized by non-differentiability on a curve in the phase space. In this paper, we discuss particular bifurcation phenomena in the dynamics of a piecewise smooth system. We consider a two-dimensional piecewise smooth system which is composed of a linear map and a nonlinear map, and analyze the stability of the system to determine the existence of dangerous border-collision bifurcation. We finally present some numerical examples of the bifurcation phenomena in the system.

Keywords

References

  1. Y. Do, A mechanism for dangerous border collision bifurcations, Chaos Soliton Fractal, 32(2007), 352-362. https://doi.org/10.1016/j.chaos.2006.07.018
  2. Y. Do, S. Kim and P. Kim, Stability of fixed points placed on the border in the piecewise linear systems, Chaos Soliton Fractal, 38(2008), 391-399. https://doi.org/10.1016/j.chaos.2006.11.022
  3. A. Ganguli and S. Banerjee, Dangerous bifurcation at border collision: When does it occur?, Phys. Rev. E, 59(2005), 5253.
  4. M. Hassouneh, E. Abed, H. Nusse, Robust dangerous border-collision bifurcation in piecewise smooth systems, Phys. Rev. Lett., 92(2004), 070201. https://doi.org/10.1103/PhysRevLett.92.070201
  5. H. Nusse and J. Yorke, Border-collision bifurcation including "period two to period three" for piecewise smooth systems, Phys. D, 57(1992), 39-57. https://doi.org/10.1016/0167-2789(92)90087-4
  6. H. Nusse, E. Ott and J. Yorke, Border-collision bifurcations: An explanation for observed bifurcation phenomena, Phys. Rev. E., 49 (1994), 1073-1076. https://doi.org/10.1103/PhysRevE.49.1073
  7. G. Yuan, S. Banerjee, E. Ott and J. Yorke, Border-collision bifurcations in the buck converter, IEEE Trans. Circ. Syst., 45(1998), 707-716. https://doi.org/10.1109/81.703837
  8. Z. Zhusubaliyev and E. Mosekilde, Bifurcations And Chaos In Piecewise-Smooth Dynamical Systems, World Scientific Series on Nonlinear Science Series A, 44(2003).