DOI QR코드

DOI QR Code

Thermodynamic Analysis on the Feasibility of Turbo Expander Power Generation Using Natural Gas Waste Pressure

천연가스 폐압발전 활성화의 당위성에 대한 열역학적 분석

  • Received : 2012.11.05
  • Accepted : 2012.12.28
  • Published : 2012.12.31

Abstract

Thermodynamic equations for the electric power and temperature in a turbo expander generator (TEG) using pressure energy in a natural gas line are derived. From the equations, it was shown that dominant factor is not the pressure difference but the pressure ratio. The high energy level in the inlet of TEG can be made from nearly no expense of electric energy input, which means TEG can be treated as one of newly available clean energy source. If a post heating method is chosen to heat up expanded natural gas, the usage of cold energy is possible without a refrigeration cycle. The combined TEG and refrigeration system enhances economic benefit much more.

터보팽창기를 이용한 폐압발전에서 전력생산량과 온도의 산출식의 열역학적 유도과정을 제시하였고, 전력생산량은 압력차가 아니라 압력비가 주요변수임을 밝혔다. 천연가스 폐압발전 인입부의 고압가스는 전기에너지(비용) 투입이 거의 없이 무상으로 얻어지는 에너지라는 사실을 보임으로써, 폐압이 지금까지는 별로 주목받지 못하였지만 새로운 청정에너지원 중의 하나임을 밝혔다. 공급가스 온도 보상을 위한 방법으로 팽창 후의 heating 방식을 택한다면, 전력생산과 더불어 냉열을 이용할 수 있고, 냉열이용량 만큼 heating 에너지를 줄일 수 있으므로 경제성을 배가시킬 수 있다.

Keywords

References

  1. Turbo expander-Generators for Natural Gas Applications, GE Energy Oil & Gas, (2008)
  2. Low Carbon Technology for a Cleaner World, CryoStar, (2007)
  3. Frank Davis, et al., "Full Load, Full Speed Test of Turbo Expander - Compressor with Active Magnetic Bearings", Proceedings of 35 th turbomachinery Symposium, (2006)
  4. KOGAS, "Feasibility Study on the Turbo - Expander Power Generation System for Pressure Letdown Station", (2008)
  5. J.M. Ha et al, "Turbo Expander Power Generation Using Pressure Drop in Natural Gas Pipeline", KIGAS, Vol.16, No.3, pp.1-7, (2012)
  6. Energy Newspapter, "Turbo Expander Power Generation in Natural Gas Pipeline", (2012.4.13)
  7. G.J. Wylen and R.E. Sonntag, "Fundamentals of Classical Thermodynamics", Mcgraw-Hill, (1976)
  8. M.J. Morgan and H.N. Shapiro, "Fundamentals of Engineering Thermodynamics", John Wiley & Sons, Inc. Mcgraw-Hill 4th ed., (2000)
  9. W. F. Stoecker, "Design of Thermal Systems", 3rd ed., McGraw-Hill, (1989)
  10. KISTI Global Trend Briefing "Wate Pressure to Electricity", (2007-06-10)
  11. Clifford R. Howard, "Hybrid Turbo Expander and Fuel Cell System for Power Recovery at Natural Gas Pressure Reduction Stations", (2009), Master's Degree Theis, Queen's Univ., Canada
  12. Randall F. Barron, "Cryogenic Systems", 2nd ed. Oxford University Press, (1985)

Cited by

  1. Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) using LNG Cold Energy vol.18, pp.2, 2014, https://doi.org/10.7842/kigas.2014.18.2.41
  2. Use of Rolling Piston Expanders for Energy Regeneration in Natural Gas Pressure Reduction Stations—Selected Thermodynamic Issues vol.7, pp.6, 2017, https://doi.org/10.3390/app7060535
  3. Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation vol.18, pp.2, 2014, https://doi.org/10.7842/kigas.2014.18.2.28
  4. Thermodynamic Analysis on Hybrid Turbo Expander - Heat Pump System for Natural Gas Pressure Regulation vol.18, pp.4, 2014, https://doi.org/10.7842/kigas.2014.18.4.13