DOI QR코드

DOI QR Code

Synthesis and Optical Properties of Novel Chemosensor Based on Rhodamine 6G

  • Kim, Hyungjoo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Son, Young-A (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Received : 2012.11.03
  • Accepted : 2012.12.13
  • Published : 2012.12.27

Abstract

The opto-functional materials have been developed as a promising research topic toward the end uses for optical materials and applications. The attractive area in this part was the design of sensor molecules for detecting harmful environmental factors. These harmful factors impart undesired effects on wide range of chemical and biological phenomenon. In this context, many researchers have studied luminescence chemosensor materials. These sensor molecules showed optical signals such as color or fluorescence change by detecting harmful environmental factors. In this study, the novel fluorescence chemosensor 1 has been designed and synthesized through reaction of rhodamine 6g hydrazide and 2-hydroxy-1-naphthaldehyde. The chemosensor 1 had been analyzed by UV-Vis and fluorescence spectrophotometer. We found that this chemosensor 1 has 'off-on' and dual type sensing properties toward $Cu^{2+}$ and $Mg^{2+}$.

Keywords

References

  1. M. Dong, T. H. Ma, A. J. Zhang, Y. M. Dong, Y. W. Wang, and Y. Peng, A Series of Highly Sensitive and Selective Fluorescent and Colorimetric 'off-on' Chemosensors for Cu(II) Based on Rhodamine Derivatives, Dyes and Pigments, 87(2), 164(2010). https://doi.org/10.1016/j.dyepig.2010.03.015
  2. L. Patrick, Nutrients and HIV: Part 2-Vitamins A and E, Zinc, B‐vitamins, and Magnesium, Alt. Med. Rev., 5(1), 39(2000).
  3. M. Formica, V. Fusi, L. Giorgi, and M. Micheloni, New Fluorescent Chemosensors for Metal Ions in Solution, Coord. Chem. Rev., 256(1-2), 170(2012). https://doi.org/10.1016/j.ccr.2011.09.010
  4. G. H. Wu, D. X. Wang, D. Y. Wu, Y. Gao, and Z. Q. Wang, Highly Sensitive Optical Chemosensor for The Detection of $Cu^{2+}$ Using a Rhodamine B Spirolatam, J. Chem. Sci., 121(4), 543 (2009). https://doi.org/10.1007/s12039-009-0066-z
  5. M. She, Z. Yang, B. Yin, J. Gu, W. Yin, J. Li, G. Zhao, and Z. Shi, A Novel Rhodamine‐Based Fluorescent and Colorimetric 'off-on' Chemosensor and Investigation of the Recognizing Behavior Towards $Fe^{3+}$, Dyes and Pigments, 92(3), 1337 (2012). https://doi.org/10.1016/j.dyepig.2011.09.014
  6. S. P. Wu, T. H. Wang, and S. R. Liu, A Highly Selective Turn-On Fluorescent Chemosesnor for Copper(II) Ion, Tetrahedron, 66(51), 9655(2010). https://doi.org/10.1016/j.tet.2010.10.054
  7. M. Beija, C. A. Afonso, and J. M. Martinho, Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes, Chem. Soc. Rev., 38(8), 2410(2009). https://doi.org/10.1039/b901612k
  8. X. Y. Zheng, W. J. Zhang, L. Mu, X. Zeng, S. F. Xue, Z. Tao, and T. Yamatob, A Novel Rhodamine‐Based Thiaclix[4] Arene Fluorescent Sensor for $Fe^{3+}\;and\;Cr^{3+}$, J. Incl. Phenom. Macrocycl. Chem., 68(1‐2), 139(2010). https://doi.org/10.1007/s10847-010-9759-7
  9. J. Mao, Q. He, and W. S. Liu, An 'off-on' Fluorescence Probe for Chromium(III) Ion Determination in Aqueous Solution, Anal. Bioanal. Chem., 396(3), 1197(2010). https://doi.org/10.1007/s00216-009-3161-6
  10. L. Huang, F. P. Hou, P. X. Xi, D. C. Bai, M. Xu, Z. P. Li, G. Q. Xie, Y. J. Shi, H. Y. Liu, and Z. Z. Zeng, A Rhodamine-Based 'tun-on' Fluorescent Chemodosimeter for $Cu^{2+}$ and its application in Living Cell Imaging, J. Inorg. Biochem., 105(6), 800(2011). https://doi.org/10.1016/j.jinorgbio.2011.02.012
  11. Y. Xiang, A. Tong, P. Jin, and Y. Ju, New Fluorescent Rhodamine Hydrazone Chemosesnor for Cu(II) with High Selectivity and Sensitivity, Organ. Lett., 8(13), 2863(2006). https://doi.org/10.1021/ol0610340
  12. Z. Zhang, Y. Zheng, W. Hang, X. Yan, and Y. Zhao, Sensitive and Selective 'off-on' Rhodamine Hydrazid Fluorescent Chemosensor for Hypochlorous Acid Detection and Bioimaging, Talanta, 85(1), 779(2011). https://doi.org/10.1016/j.talanta.2011.04.078
  13. G. H. Wu, D. X. Wang, D. Y. Wu, Y. Gao, and Z. Q. Wang, Highly Senstive Optical Chemosensor for the Detection of $Cu^{2+}$ using a Rhodamine B Spirolatam, J. Chem. Sci., 121(4), 543(2009). https://doi.org/10.1007/s12039-009-0066-z
  14. X. Chen, T. Pradhan, F. Wang, J. S. Kim, and J. Yoon, Fluorescent Chemosensors Based on Spiroing-Opening of Xanthenes and Related Derivatives, Chem. Rev., 112(3), 1910(2012). https://doi.org/10.1021/cr200201z
  15. X. Zhang, Y. Shiraishi, and T. Hirai, Fe(III)- and Hg(II)-Selective Dual Channel Fluorescence of a Rhodamine-Azacrown Ether Conjugate, Tet. Lett., 49(26), 417(2008).
  16. E. M. Lee, S. Y. Gwon, B. C. Ji, and S. H. Kim, Thermo- and Acid/Base-Induced Spectral Switching of a Poly(N-isopropylacrylamide) Copolymer Containing Benzopyran-Based D-$\pi$-A Type Dye Units, Textile Coloration and Finishing (J. Korean Soc. Dye. and Finish.), 22(3), 181(2010). https://doi.org/10.5764/TCF.2010.22.3.181
  17. T. Kim, K. Jang, and S. Jeon, Synthesis Red Disperse Dyes with Various Diazo Components and Coloration of Unmodified Pure Polypropylene Fibers, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 22(1), 1(2010). https://doi.org/10.5764/TCF.2010.22.1.001
  18. P. MacCarthy, Simplified Experimental Route for Obtaining Job's Curves, Anal. Chem., 50(14), 2165 (1978). https://doi.org/10.1021/ac50036a059
  19. B. Delley, An All-Electron Numerical Method for Solving The Local Density Functional for Polyatomic Molecules, J. Chem. Phys., 92(1), 508(1990). https://doi.org/10.1063/1.458452
  20. B. Delley, From Molecules to Solids with the $DMol^3$ Approach, J. Chem. Phys., 113(18), 7756 (2000). https://doi.org/10.1063/1.1316015
  21. A. D. Boese and N. C. Handy, A New Parametrization of Exchange-Correlation Generalized Gradient Approximation Functionals, J. Chem. Phys., 114(13), 5497(2001). https://doi.org/10.1063/1.1347371

Cited by

  1. Amine Gases Detecting Studies using the Compounds on the Urethane Nano Web and Laminating Film vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.70
  2. Characteristics of HOMO and LUMO Energy Potentials toward Rhodamine 6G-Naphthaldehyde Chemosensor vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.1
  3. Spectral Properties of a pH Responsive Water Soluble Spironaphthoxazine and Its Multi-Switching Property vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.18
  4. Anthraquinone-carbamodithiolate Assembly as Selective Chromogenic Chemosensor for Fe3+ vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.13
  5. Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion vol.25, pp.3, 2013, https://doi.org/10.5764/TCF.2013.25.3.153
  6. Femtomolar response of a plasmon-coupled ZnO/graphene/silver hybrid whispering-gallery mode microcavity for SERS sensing vol.7, pp.9, 2019, https://doi.org/10.1039/C8TC06305B