DOI QR코드

DOI QR Code

Distribution of S-alleles among Korean Apples by PCR and Cross-pollination

  • Heo, Seong (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, Soon-Il (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Hwang, Jeong-Hwan (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Shin, Yong-Uk (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Mok-Jong (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Park, Bong Ju (Department of Horticultural Science, Chungbuk National University) ;
  • Oh, Sung-Il (Department of Horticultural Science, Chungbuk National University) ;
  • Oh, Young-Jae (Department of Horticultural Science, Chungbuk National University) ;
  • Kim, Daeil (Department of Horticultural Science, Chungbuk National University)
  • Received : 2012.11.17
  • Accepted : 2012.12.01
  • Published : 2012.12.31

Abstract

To acquaint correct information about the fertilizability and analyze S-allele based genetic diversity among Korean apples, we investigated self-incompatibility genotypes by PCR and cross-pollination tests in field. As a consequence, S-genotypes of Korean apples were distributed within narrow genetic diversity as $S_1S_3$ for 'Hongro' and 'Saenara'; $S_1S_9$ for 'Gamhong' and 'Manbok'; $S_3S_5$ for 'Seokwang'; $S_3S_9$ for 'Sunhong', 'Seohong', 'Chukwang', and 'Hwahong'. Coupled with cross-pollination experiments in field, our results provide support for the view that apples are fully compatible when both of their S-loci differ and semi-compatible when they carry one different and one identical S-locus. Furthermore, the results of this study indicate that S-alleles have to be extended to various genotypes for Korean apple breeding.

Keywords

References

  1. Boskovic, R., and K.R. Tobutt. 1999. Correlation of stylar ribonuclease isoenzymes with incompatibility alleles in apple. Euphytica 107:29-43. https://doi.org/10.1023/A:1003516902123
  2. Broothaerts, W. 2003. New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-allele. Theor. Appl. Genet. 106:703-714.
  3. Broothaerts, W., I. van Nerum, and J. Keulemans. 2004. Update on and review of the incompatibility (S-) genotypes of apple cultivars. Hortscience 39:943-947.
  4. Janssens, G.A., I.J. Goderis, W.F. Broekaert, and W. Broothaerts. 1995. A molecular method for S-allele identification in apple based on allele-specific PCR. Theor. Appl. Genet. 91:691-698.
  5. Kim, H.T., G. Hattori, Y. Hirata, D.I. Kim, J.H. Hwang, Y.U. Shin, and I.S. Nou. 2006. Determination of self-incompatibility genotypes of Korean apple cultivars based on S-RNase PCR. J. Plant Bio. 49:448-454. https://doi.org/10.1007/BF03031125
  6. Kitahara, K. and S. Matsumoto. 2002. Sequence of the $S_{10}$ cDNA from McIntosh apple and a PCR-digestion identification method. HortScience 37:187-190.
  7. Kobel, F., P. Steinegger, and J. Anliker. 1939. Further investigations on pollination in apples and pears. Landw jb Schweiz. 53:160-191.
  8. Komori, S., J. Soejima, K. Abe, H. Kato, N. Kotoda, and K. Kudo. 1999. Analyses of S-allele genotypes of 'McIntosh', 'Kitakami', 'Worcester Pearmain', etc. J. Japan. Soc. Hort. Sci. 68:94.
  9. Komori, S., J. Soejima, K. Abe, N. Kotoda, and H. Kato. 2000. Analysis of S-allele genotypes and genetic diversity in the apple. Acta Hort. 538:83-86.
  10. Matsumoto, S., Y. Furusawa, K. Kitahara, S. Komori, and J. Soejima. 2003. Partial genomic sequences of $S_{6^-},\;S_{12^-},\;S_{13^-},\;S_{14^-},\;S_{17^-},\;S_{19^-},\;and\;S_{21^-}$RNases of apple and their allele designations. Plant Biotechnol. 20:323-329. https://doi.org/10.5511/plantbiotechnology.20.323
  11. Matsumoto, S. and K. Kitahara. 2000. Discovery of a new self-incompatibility allele in apple. Hortscience 35:1329-1332.
  12. Sapir, G., R.A. Stern, S. Shafir, and M. Goldway. 2008. S-RNase based S-genotyping of Japanese plum (Prunus salicina Lindl.) and its implication on the assortment of cultivar-couples in the orchard. Sci. Hort. 118:8-13. https://doi.org/10.1016/j.scienta.2008.05.004
  13. Sassa, H., H. Kakui, M. Miyamoto, Y. Suzuki, T. Hanada, K. Ushijima, M. Kusaba, H. Hirano, and T. Koba. 2007. S locus F-Box brothers : Multiple and pollen-specific F-Box genes with S Haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869-1881. https://doi.org/10.1534/genetics.106.068858
  14. Sassa, H., T. Nishio, Y. Kowyama, T. Hirano, T. Koba, and H. Ikehashi. 1996. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol. Gen. Genet. 250:547-557.
  15. Tanksley, S.D. and S.R. McCouch. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063-1066. https://doi.org/10.1126/science.277.5329.1063
  16. van Nerum, I., M. Geerts, A. van Haute, J. Keulemans, and W. Broothaerts. 2001. Re-examination of the self-incompatibility genotype of apple cultivars containing putative 'new' S-alleles. Theor. Appl. Genet. 103:584-591. https://doi.org/10.1007/PL00002913

Cited by

  1. S-allele frequency and genetic diversity of Malus orientalis Uglitzk along an altitudinal gradient in the Hyrcanian forest vol.29, pp.2, 2020, https://doi.org/10.5424/fs/2020292-15846
  2. Identification of pollinizers for apple ‘SCS426 Venice vol.80, pp.None, 2012, https://doi.org/10.1590/1678-4499.20200129